首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To effectively modify the properties of an epoxy, branched oligomers were synthesized from ?‐caprolactone (CL) and end‐functionalized to realize network precursors that can be reactively blended with the epoxy. The ring‐opening polymerization (ROP) of the CL in the presence of polyglycerol (PGL) initiator (3.9 and 9.1 mol %) and Sn(II) 2‐ethylhexanoate catalyst yielded oligomers with hydroxyl end‐groups, which were converted to carboxylic acid functionality by reaction with succinic anhydride. The functionalized oligomers had a four‐armed structure and the molecular weight of the oligomers could be controlled by the ratio of CL to PGL in the feed. To achieve an adequately crosslinked network in the reactive blending, a dual‐catalyzed reaction scheme was employed. First the oligomer was incorporated into the epoxy matrix in an imidazole‐catalyzed reaction and then the crosslinking was completed with an acid‐catalyzed ROP of the residual epoxies. Investigations showed that toughened coatings could be prepared from the inherently brittle epoxy through proper choice of the blending ratio of oligomer to epoxy. The blending increased surface hydrophobicity at high concentrations of functionalized oligomer, but did not have an adverse effect on the inherently advantageous endothelial cell spreading. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3677–3688, 2006  相似文献   

2.
A series of novel lipid functionalized poly(ε‐caprolactone)s (PCLs) were synthesized through ROP of ε‐caprolactone in the presence of threo‐9,10‐dihydroxyoctadecanoic acid, synthesized from oleic acid. PCLs with different molecular weights were obtained by controlling the molar ratio of the initiator to the monomer. DSC and XRD analysis indicate that the crystallinity of PCLs decreased when compared to unfunctionalized PCL. The enzymatic degradation study shows that for samples with lower lipid derivatives content, a higher enzymatic degradation rate was observed because the lipase enzymes attack the ester bonds of the polymer; increased lipid content therefore inhibits the action of the lipase enzymes. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
The purpose of this research was to synthesize and characterize a novel class of four‐arm, star‐shape biodegradable polymers having double‐bond functionality as a precursor for free‐radical polymerization, with unsaturated monomers or macromers or photocrosslinking for network formation. The synthesis involved two basic steps. First, hydroxyl‐functionalized four‐arm poly(?‐caprolactone)s (PPCL‐OH) were synthesized by the ring‐opening polymerization of ?‐caprolactone in the presence of pentaerythritol and stannous octoate. Second, double‐bond–functionalized four‐arm poly(?‐caprolactone)s (PPCL‐Ma) were synthesized by reacting PPCL‐OH with maleic anhydride in the melt at 130°C. Quantitative conversion of hydroxyl functionality in PPCL‐OH to double‐bond functionality was achieved for low molecular weight PPCL‐OH. Both the PPCL‐OH and the PPCL‐Ma were characterized by FTIR, 1H‐NMR, 13C‐NMR, SEC, and DSC. The capability of the double‐bond–functionalized four‐arm poly(?‐caprolactone)s (PPCL‐Ma) to form network structures was preliminarily shown by photocrosslinking PPCL‐Ma. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2296–2306, 2002  相似文献   

4.
Poly(butylene succinate)‐based prepolymers containing itaconic acid units or maleic acid units in the main chain were synthesized through the condensation reaction of 1,4‐butanediol, succinic acid, and itaconic acid or maleic acid. The resulting prepolymers, with weight‐average molecular weights in the several thousands, were cured at 115°C with benzoyl peroxide to produce crosslinked polyesters that were insoluble in chloroform. Differential scanning calorimetry analysis revealed that the glass‐transition temperature rose with crosslinking and that the melting temperature and heat of melting decreased with crosslinking. These results implied that crosslinking was successfully carried out and that the crystallinity of the polymer decreased. The crosslinked polymer showed lower biodegradability in the biochemical oxygen demand assay with activated sludge but retained some biodegradability. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1473–1480, 2005  相似文献   

5.
PCL‐segmented multiallyl‐functionalized poly (ester urethane) prepolymers (PEUs) were prepared in a two‐step process. First, hydroxyl‐terminated PCL and glycerol simultaneously reacted with an excess of a diisocyanate, the obtained isocyanate functionalized prepolymers then reacts with allyl amine. PEUs structure choice mainly focused on two aspects: the PCL segments concentration and the allyl functionality that, respectively, affects the biodegradability and the density of the issued networks. The concentrations of the different reactants were fixed, taking into account the desired mean structure and also to prevent crosslinking during the synthesis of the prepolymers. FTIR was principally used to monitor the synthesis of allyl functionalized PEUs. The carbonyl absorption of PCL, initially located at 1720 cm?1, reaction of the PCL and shifted toward 1730 cm?1, due to a decrease in crystallinity as confirmed by DSC. The structure of allyl‐functionalized PCL‐segmented PEU analyzed by 1H NMR, double bond content was between 0.2 and 1.2 mmol g?1. Networks were obtained by UV‐initiated radical copolymerization of allyl‐functionalized PEUs and HEMA. The effects of PCL concentration and molar mass on their thermomechanical and thermal properties were analyzed. Particular damping properties were obtained. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41295.  相似文献   

6.
Poly ε‐caprolactone‐polystyrene block‐copolymers (PCL‐b‐PSt) were synthesized using a modified titanium catalyst as the dual initiator. Alcoholysis of Ti(OPr)4 by 4‐hydroxy 2,2,6,6 tetramethyl piperidinyl‐1‐oxyl (HO‐TEMPO) gave a bifunctional initiator Ti(OTEMPO)4. Poly ε‐caprolactone prepolymer end‐capped with the nitroxide group was first prepared by ring opening polymerization of ε‐caprolactone with this initiator at high conversion. The nitroxide‐end‐capped structure and molar mass (Mn) of the polymers were demonstrated by typical UV absorption band. This analytical technique indicates a near‐quantitative nitroxide functionality and a Mn in good agreement with size exclusion chromatography (SEC) ones. This polyester prepolymer was used to further initiate the radical polymerization with styrene and reach the block copolymers (PCL‐b‐PSt). All the prepolymers and block copolymers were characterized by SEC and NMR spectroscopy. Additionally, the preparation of star polymers bearing two kinds of arms (PCL and PSt) was envisaged and a preliminary result was given. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Environmentally friendly organocatalytic synthesis of aliphatic polyesters was studied. The catalysis investigated is novel, and lends itself well to the potential production of valuable biodegradable products. The reactions were based on an organic acids‐catalyzed ring‐opening polymerization of ε‐caprolactone with fatty acid derivatives as the initiator and were performed in the absence of solvents. The chemical structures of the functionalized polymers were confirmed by 1H and 13C‐NMR spectra. Polymers with different molecular weights, in the range 10,900–15,200 were obtained in the presence of fumaric acid as catalyst. The thermal properties of the functionalized PCLs were determined by modulated differential scanning calorimetry and thermogravimetric analysis. The MDSC results verified that the crystallinity and the melting point of the lipid‐functionalized polymers were lower than that of the unfunctionalized poly(ε‐caprolactone). The hydrolytic degradation of the functionalized polymer was also investigated. The result shows the degradation rate was affected by the presence of oleic acid derivatives in the polymer molecule. The lipid‐functionalized polymers synthesized by the metal‐free polymerization systems seem to be suitable biodegradable polyesters for use in biomedical and pharmacological applications. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
BACKGROUND: A series of novel biodegradable poly[(sebacic anhydride)‐co‐caprolactone] (PSA‐co‐PCL) triblock copolymers were prepared by melt condensation of acylated PSA and monofunctional hydroxyl‐terminated PCL prepolymers. These copolymers could be used as novel drug delivery carriers with expected good drug permeability due to the PCL component. The degradation rate and mode can be modulated by varying the ratio of monomers in the copolymer. RESULTS: The homopolymers and copolymers were characterized using 1H NMR, gel permeation chromatography and differential scanning calorimetry (DSC). 1H NMR confirmed the formation of triblock copolymers that comprise a middle PSA block and two side PCL blocks. DSC revealed that the melting temperature and degree of crystallinity for both sebacic anhydride (SA) and caprolactone (CL) components are strongly composition dependent, implying the hindrance effect of the two components on the crystallinity. In vitro degradation experiments showed that the mass loss is significantly accelerated for samples in base buffer solution and more rapid for the copolymers with a higher SA content. Scanning electron microscopy revealed that for SA‐rich copolymer, PSA(80 wt%)‐co‐PCL, surface erosion dominated the degradation mode of the sample. In contrast, for CL‐rich copolymer, PSA(20 wt%)‐co‐PCL, a micropore structure developed at a degradation time of 155 h along the edges of the sample, owing to the hydrolysis of SA. CONCLUSION: It is concluded that the rate and mode of degradation of these copolymers can be tuned by varying the composition of the copolymers. Copyright © 2007 Society of Chemical Industry  相似文献   

9.
A novel biodegradable magnetic‐sensitive shape memory poly(?‐caprolactone) nanocomposites, which were crosslinked with functionalized Fe3O4 magnetic nanoparticles (MNPs), were synthesized via in situ polymerization method. Fe3O4 MNPs pretreated with γ‐(methacryloyloxy) propyl trimethoxy silane (KH570) were used as crosslinking agents. Because of the crosslinking of functionalized Fe3O4 MNPs with poly(?‐caprolactone) prepolymer, the properties of the nanocomposites with different content of functionalized Fe3O4 MNPs, especially the mechanical properties, were significantly improved. The nanocomposites also showed excellent shape memory properties in both 60 °C hot water and alternating magnetic field (f = 60, 90 kHz, H = 38.7, 59.8 kA m?1). In hot water bath, all the samples had shape recovery rate (Rr) higher than 98% and shape fixed rate (Rf) nearly 100%. In alternating magnetic field, the Rr of composites was over 85% with the highest at 95.3%. In addition, the nanocomposites also have good biodegradability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45652.  相似文献   

10.
Pyrene end‐labeled star poly(?‐caprolactone)s (PCLs) with polyhedral oligomeric silsesquioxane (POSS) core were prepared by combination of copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) click chemistry and ring‐opening polymerization techniques. First, ?‐caprolactone (?‐CL) is polymerized by using 1‐pyrene methanol as initiator and stannous octoate as catalyst to obtain α‐pyrene‐ω‐hydroxyl telechelic PCL with different chain lengths. Then, its hydroxyl group is converted to acetylene functionality by esterification reaction with propargyl chloroformate. Finally, the CuAAC click reaction of α‐pyrene‐ω‐acetylene telechelic PCL with POSS‐(N3)8 leads to corresponding pyrene end‐labeled star‐shaped PCLs. The successful synthesis of pyrene end‐labeled star polymers is clearly confirmed by 1H‐nuclear magnetic resonance, Fourier transform infrared, gel permeation chromatograph, differential scanning calorimeter, and thermogravimetric analysis. Furthermore, non‐covalent interactions of obtained star polymers with fullerene are investigated in liquid media. Based on Raman spectroscopy and visual investigations, the star polymer having shorter chain length exhibited better and more stable dispersion with fullerene. The amount of pyrene units present per polymer chains can directly influence the dispersion stability of fullerene. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46520.  相似文献   

11.
The objective of this study was to prepare high molecular weight poly(ester‐anhydride)s by melt polycondensation. The polymerization procedure consisted of the preparation of carboxylic acid terminated poly(?‐caprolactone) prepolymers that were melt polymerized to poly(?‐caprolactone)s containing anhydride functions along the polymer backbone. Poly(?‐caprolactone) prepolymers were prepared using either 1,4‐butanediol or 4‐(hydroxymethyl)benzoic acid as initiators, yielding hydroxyl‐terminated intermediates that were then converted to carboxylic acid‐terminated prepolymers by reaction with succinic anhydride. Prepolymers were then allowed to react with an excess of acetic anhydride, followed by subsequent polycondensation to resulting high molecular weight poly(ester‐anhydride)s. Upon coupling of prepolymers, size exclusion chromatography analyses showed an increase from 3600 to 70,000 g/mol in number‐average molecular weight (Mn) for the 1,4‐butanediol initiated polymer, and an increase from 7200 to 68,000 g/mol for the 4‐(hydroxymethyl)benzoic acid‐initiated polymer. 4‐Hydroxybenzoic acid and adipic acid were also used as initiators in the preparation of poly(?‐caprolactone) prepolymers. However, with these initiators, the results were not satisfactory. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 176–185, 2001  相似文献   

12.
High‐molecular‐weight polymers of ϵ‐caprolactone (CL) and maleic anhydride (MA) with anhydride group content of about 1% wt have been synthesized and studied. The polymerization reaction was carried out in bulk under nitrogen atmosphere. Stannous octoate (Sn(oct)2), and 2,2'‐azobisisobutyronitrile (AIBN) were used as a catalyst and an initiator, respectively. A two‐level design of experiments was used to study the effect of various conditions on the characteristics of the copolymer. Reaction time, temperature, and concentration ratio of various reactants (two monomers, monomer to catalyst, and monomer to initiator) were the independent variables used, and the dependent variables included the molecular weight and the anhydride content in the polymer. Nuclear magnetic resonance (NMR) studies indicate that the succinic anhydride units were incorporated individually either to the polymer chain end or backbone. Anhydride content in the polymer and gel permeation chromatograph (GPC) studies indicate that the maleic anhydride acts as the true initiating species rather than as a comonomer in the system. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3189–3194, 2000  相似文献   

13.
The synthesis and properties of six hydrazone‐functionalized crosslinked polymers possessing stable nonlinear optics (NLO) properties are presented. First, a series of six hydroxy‐functionalized, NLO‐active hydrazone chromophores were synthesized. These chromophores were then grafted via its hydroxy functionality on an epoxy polymer to obtain the six NLO‐active soluble prepolymers. The grafting reaction yielded multiple secondary hydroxyl sites, which were used for further crosslinking by formulation of the prepolymer with a blocked polyisocyanate crosslinker. This formulation was spin‐coated on glass slides to form 2–2.5 μ thick defect‐free transparent films. The films were corona‐poled above their glass‐transition temperatures to align the chromophores in a noncentrosymmetric fashion and were simultaneously cured. The thermal characteristics of the second‐order nonlinearity of the six polymers were compared to illustrate the key structure–property relationships underlying the performance of the films in terms of NLO activity and thermal stability. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 770–781, 2004  相似文献   

14.
Understanding the underlying role of microstructural design in polymers allows for the manipulation and control of properties for a wide range of specific applications. As such, this work focuses on the study of microstructure–property relationships in l‐ lactide/?‐caprolactone (LL/CL) copolymers. One‐step and two‐step bulk ring‐opening polymerization (ROP) procedures were employed to synthesize LL/CL copolymers of various compositions and chain microstructures. In the one‐step procedure, LL and CL were simultaneously copolymerized to yield P(LL‐stat‐CL) statistical copolymers. In the two‐step procedure, poly(l‐ lactide) (PLL) and poly(?‐caprolactone) (PCL) prepolymers were synthesized in the first step before CL and LL respectively were added in the second step to yield P[LL‐b‐(CL‐stat‐LL)‐b‐LL] and P[CL‐b‐(LL‐stat‐CL)‐b‐CL] block copolymers as the final products. The findings reveal that, in addition to the copolymerization procedure employed, the length and type of the prepolymer play important roles in determining the chain microstructure and thereby the overall properties of the final copolymer. Moreover, control over the degree of crystallinity and the type of crystalline domains, which is controlled during the polymer chemistry process, heavily influences the physical and mechanical properties of the final polymer. In summary, this work describes an interesting approach to the microstructural design of biodegradable copolymers of LL and CL for potential use in biomedical applications. © 2019 Society of Chemical Industry  相似文献   

15.
Carbon nanofibers (CNFs) were covalently functionalized with biodegradable poly(?‐caprolactone) (PCL) by in situ ring‐opening polymerization (ROP) of ?‐caprolactone in the presence of stannous octoate. Surface oxidation treatment of the pristine CNFs afforded carboxylic CNFs (CNF‐COOH). Reaction of CNF‐COOH with excess thionyl chloride (SOCl2) and glycol produced hydroxyl‐functionalized CNFs (CNF‐OH). Using CNF‐OH as macroinitiator, PCL was covalently grafted from the surfaces of CNFs by ROP, in either the presence or absence of sacrificial initiator, butanol. The grafted PCL content was achieved as high as 64.2 wt %, and can be controlled to some extent by adjusting the feed ratio of monomer to CNF‐OH. The resulting products were characterized by FTIR, NMR, Raman spectroscopy, TGA, DSC, SEM, TEM, HRTEM, and XRD. Core–shell nanostructures were observed under HRTEM for the PCL‐functionalized CNFs because of the thorough grafting. The PCL‐grafted CNFs showed different melting and crystallization behaviors from the mechanical mixture of PCL and CNF‐OH. This approach to PCL‐functionalized CNFs opens an avenue for the synthesis, modification, and application of CNF‐based nanomaterials and biomaterials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
Nuclear magnetic resonance spectroscopy (NMR) characterization of the statistical copolymers of this study showed that the poly(ε‐caprolactone‐co‐L‐lactide)s, with ε‐caprolactone (ε‐CL) molar contents ranging from 70 to 94% and ε‐CL average sequence length (lCL) between 2.20–9.52, and the poly(ε‐caprolactone‐co‐δ‐valerolactone)s, with 60 to 85% of ε‐CL and lCL between 2.65–6.08, present semi‐alternating (R→2) and random (R~1) distribution of sequences, respectively. These syntheses were carried out with the aim of reducing the crystallinity of poly(ε‐caprolactone) (PCL), needed to provide mechanical strength to the material but also responsible for its slow degradation rate. However, this was not achieved in the case of the ε‐caprolactone‐co‐δ‐valerolactone (ε‐CL‐co‐δ‐VAL). Non‐isothermal cooling treatments at different rates and isothermal crystallizations (at 5, 10, 21 and 37°C) were conducted by differential scanning calorimetry (DSC), and demonstrated that ε‐CL copolymers containing δ‐valerolactone (δ‐VAL) exhibited a larger crystallization capability than those of L‐lactide (L‐LA) and also arranged into crystalline structures over shorter times. The crystallization enthalpies of the ε‐CL‐co‐δ‐VAL copolymers during the cooling treatments and their heat of fusion (ΔHm) at the different isothermal temperatures were very large (i.e. ΔHc > 53 Jg?1) and in some cases, unrelated to the copolymer composition. In some compositions, such as the 60 : 40, Wide Angle X‐ray Scattering (WAXS) proved that that these two lactones undergo isomorphism and co‐crystallize in a single cell. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42534.  相似文献   

17.
Low‐molecular‐weight HOOC‐terminated poly(butylene adipate) prepolymer (PrePBA) and poly(butylene succinate) prepolymer (PrePBS) were synthesized through melt‐condensation polymerization from adipic acid or succinic acid with butanediol. The catalyzed chain extension of these prepolymers was carried out at 180–220°C with 2,2′‐(1,4‐phenylene)‐bis(2‐oxazoline) as a chain extender and p‐toluenesulfonic acid (p‐TSA) as a catalyst. Higher molecular weight polyesters were obtained from the catalyzed chain extension than from the noncatalyzed one. However, an improperly high amount of p‐TSA and a high temperature caused branching or a crosslinking reaction. Under optimal conditions, chain‐extended poly(butylene adipate) (PBA) with a number‐average molecular weight up to 29,600 and poly(butylene succinate) (PBS) with an intrinsic viscosity of 0.82 dL/g were synthesized. The chain‐extended polyesters were characterized by IR spectroscopy, 1H‐NMR spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis, wide‐angle X‐ray scattering, and tensile testing. DSC, wide‐angle X‐ray scattering, and thermogravimetric analysis characterization showed that the chain‐extended PBA and PBS had lower melting temperatures and crystallinities and slower crystallization rates and were less thermally stable than PrePBA and PrePBS. This deterioration of their properties was not harmful enough to impair their thermal processing properties and should not prevent them from being used as biodegradable thermoplastics. The tensile strength of the chain‐extended PBS was about 31.05 MPa. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Lanthanide metal (II) 2,6‐di‐tert‐butylphenoxide complexes (ArO)2Ln(THF)3 (Ln = Sm 1 , Yb 2 ) alone have been developed to catalyze the ring‐opening polymerization of trimethylenecarbonate (TMC) and random copolymerization of TMC and ε‐caprolactone (ε‐CL) for the first time. The influence of reaction conditions, such as initiator, initiator concentration, polymerization temperature, and polymerization time, on monomer conversion, molecular weight, and molecular weight distribution of the resulting PTMC was investigated. It was found that the divalent complex 1 showed higher activity for the polymerization of TMC than complex 2 . The random structure and thermal behavior of the copolymers P(TMC‐co‐CL) have been characterized by 1H NMR, 13C NMR, GPC, and DSC analysis. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
Bionanoparticles of starch obtained by submitting native potato starch granules to acid hydrolysis conditions. The resulted starch nanoparticles were used as core or macro initiator for polymerization of ε‐caprolactone (CL). Starch nanoparticle‐g‐polycaprolactone was synthesized through ring‐opening polymerization (ROP) of CL in the presence of Sn(Oct)2 as initiator. The detailed microstructure of the resulted copolymer was characterized with NMR spectroscopy. Thermal characteristic of the copolymer was investigated using DSC and TGA. By introducing PCL, the range of melting temperature for starch was increased and degradation of copolymer occurred in a broader region. X‐ray diffraction and TEM micrographs confirmed that there was no alteration of starch crystalline structure and morphology of nanoparticles, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
End‐capped poly(ε‐caprolactone)s (PCLs) have been prepared elsewhere by various initiators. However, hydroxytelechelic PCLs have been reported less frequently, although there are two hydroxyl end groups in one polymer chain, which allows diversified functionalization. Two tetrahydrosalen‐backboned chlorides containing rare‐earth complexes, YbLCl(DME)2 and ErLCl(DME) {where L is 6,6′‐[ethane‐1,2‐diylbis(methylazanediyl)]bis (methylene)bis(2,4‐di‐tert‐butylphenol) and DME is dimethoxyethane}, were first synthesized in this study, and they were used as initiator precursors for a ring‐opening polymerization in the presence of NaBH4 to afford hydroxytelechelic PCLs. The polymerization under different conditions was investigated, and a possible mechanism is proposed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号