共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of poly(ester imide)s mainly derived from N,N′‐hexane‐1,6‐diylbistrimellitimides, 4,4′‐dihydroxybenzophenone, and p‐hydroxybenzoic acid were synthesized by a direct polycondensation method in benzenesulfonyl chloride, N,N′‐dimethylformamide, and pyridine with different monomer feeding sequences. The molecular structures and properties of the resultant poly(ester imide)s were characterized with NMR, IR spectrometry, polarized light microscopy, wide‐angle X‐ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. The results showed that the monomer feeding sequences had a great effect on the sequential structure of the molecular chains of the copolymers and consequently on their liquid‐crystalline (LC) properties, fiber‐forming capability, and other properties. Thus, it is probable that one could obtain an LC poly(ester imide) with given properties by controlling the monomer feeding sequence during the polycondensation process. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
2.
Summary: Blends of the commercial liquid‐crystalline polyester Rodrun LC‐3000 (60–90 wt.‐%) with a bisphenol A‐diglycidyl ether based diepoxide (DOW D.E.R.330) and an aromatic diamine (MCDEA) prepared in a twin‐screw extruder have been compression‐moulded and cured either isothermally at 260 °C or in a temperature ramp between 160 and 230 °C. The blends were investigated with SEM and thermal analysis (DSC, DMTA). Blends with 80% Rodrun and less cured at 260 °C and the blend containing 60% Rodrun cured in a temperature ramp showed macro‐phase separation followed by reaction‐induced micro‐phase separation (RIPS) both in the Rodrun‐rich and in the epoxy‐rich macro‐separated phases. Blends containing 90, 80 and 70% Rodrun moulded at 160 °C and cured in the temperature ramp showed only RIPS and a morphology rather similar to that of the uncured blends that was most likely co‐continuous; the blend with 90% Rodrun cured at 260 °C showed RIPS and a dispersed epoxy phase in a Rodrun matrix. Phase composition has been determined by extraction of the soluble fraction and chemical analysis.
3.
The liquid‐crystalline (LC) monomer 4‐allyoxybenzoyloxy‐4′‐buthylbenzoyloxy‐p‐phenyl (M1), whose LC phase appeared at lower temperatures, from 137 to 227°C, and the modified mesogenic monomer 4‐allyoxybenzoyloxy‐4′‐methyloxybenzoyloxy‐p‐biphenyl (M2), whose LC phase appeared at higher temperatures, from 185 to 312°C, were prepared. A series of side‐chain LC polysiloxanes containing M1 and M2 were prepared by graft copolymerization. Their LC properties were characterized by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction. The results show that the introduction of the modified mesogenic monomer M2 into the polymeric structure caused an additional increase in the clearing point (isotropic transition temperature) of the corresponding polysiloxanes, compared with unmodified polysiloxanes, but did not significantly affect the glass‐transition temperature. Moreover, the modified polysiloxanes exhibited nematic phases as the unmodified polymer did. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1196–1201, 2005 相似文献
4.
Wei Hu Baijun Liu Dong Wang Yanhua Yang Chunhai Chen Zhenhua Jiang Wanjin Zhang Zhongwen Wu 《应用聚合物科学杂志》2003,89(5):1347-1350
Novel aromatic poly(ether ketones) containing bulky lateral groups were synthesized via nucleophilic substitution reactions of 4,4′‐biphenol and (4‐chloro‐3‐trifluoromethyl)phenylhydroquinone (CF‐PH) with 1,4‐bis(p‐fluorobenzoyl)benzene. The copolymers were characterized by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction, and polarized light microscopy observation. Thermotropic liquid‐crystalline behavior was observed in the copolymers containing 40, 50, 60, and 70 mol % CF‐PH. The crystalline–liquid‐crystalline transition [melting temperature (Tm)] and the liquid‐crystalline–isotropic phase transition appeared in the DSC thermograms, whereas the biphenol‐based homopolymer had only a melting transition. The novel poly(aryl ether ketones) had glass‐transition temperatures that ranged from 143 to 151°C and lower Tm's that ranged from 279 to 291°C, due to the copolymerization. The polymers showed high thermal stability, and some exhibited a large range in mesophase stability. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1347–1350, 2003 相似文献
5.
Two liquid‐crystalline polyesters (LCPs) with different chain rigidities were synthesized and melt‐blended with polycarbonate (PC) at an LCP concentration of 2 wt %. The first LCP (LCP1) was based on hydroxybenzoic acid (HBA), hydroquinone (HQ), sebacic acid (SEA), and suberic acid (SUA) and contained a relatively high concentration of flexible units (SEA and SUA). The other one (LCP2) was based on HBA, hydroxynaphthoic acid, HQ, and SEA and contained a lower concentration of flexible units. LCP2 had a much lower melting point, a higher clearing temperature, and a lower shear viscosity than LCP1. The blending was carried out at 265, 280, and 300°C for both systems. The extent of the viscosity reduction induced by the addition of LCP1 depended on the compounding temperature, and the lowest viscosity was achieved with blending at 280°C. This was attributed to the large interfacial area and interactions between the flexible segments of LCP1 and PC chains at the interface. For PC/LCP2, the viscosity reduction was not significantly dependent on the compounding temperature, and when it was compounded at 280°C, its viscosity was significantly higher than that of PC/LCP1 at high shear rates, even though LCP2 had lower viscosity. A scanning electron microscopy study revealed that, with compounding at 265 and 280°C, LCP2 was poorly dispersed in the PC matrix in comparison with LCP1, and the glass‐transition‐temperature depression caused by the addition of LCP2 was relatively small. This indicated that interfacial interactions in PC/LCP2 were weaker, thereby explaining their different rheological behavior in comparison with PC/LCP1. With compounding at 300°C, the compatibility of both systems improved because of transesterification reactions, but this did not lead to a lower viscosity because of the lack of physical interfacial interactions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 960–969, 2004 相似文献
6.
The addition of small amounts of liquid‐crystalline polymers to thermoplastics leads to the formation of in situ–reinforced materials, with improved processability and mechanical properties. Nevertheless, the lack of adhesion between the thermoplastic and the liquid‐crystalline polymer often occurs, thus requiring the use of compatibilizers. In this case, the results of several previous works show that there is an improvement of strength, usually accompanied by a decrease of toughness and, thus, the interest of LCP/TP blends for industrial applications will certainly increase if both strength and toughness are obtained. Additionally, the emphasis of previous studies has been on the evaluation of the properties of the blend under stationary conditions and not under non‐stationary ones, which are, in fact, those most relevant to processing sequences. Thus, the present work focuses on the influence of type of compatibilizer on the mechanical and rheological properties of polypropylene/LCP blends under nonstationary conditions. In terms of mechanical properties, the traditional increase of tensile strength was obtained for all compatibilizers, which was essentially due to the formation, during processing, of thinner and longer fibrils of LCP dispersed in the matrix than those observed for the noncompatibilized blends. Additionally, an improvement of the impact strength and flexural modulus was also observed for the blend in which a compatibilizer with an elastomeric nature was used. Rheologically, the experiments most sensitive to the structure were those performed in transient shear, with an increase of the transient stress (in the form of an overshoot) of different magnitudes being observed for the different compatibilizers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 694–703, 2005 相似文献
7.
A commercial thermotropic liquid crystalline polymer (LCP), Vectra A950, was injection molded into rectangular sheets of thickness ranging from 1 to 4 mm. By changing the thickness of the mold, the shear rate experienced by the TLCP melt in the mold could be varied. The 1‐mm test sample was highly anisotropic while that with larger thickness (4 mm) was less anisotropic. X‐ray diffraction profile at various depths for each of the test sample corresponded to the degree in the fiber orientation present in the test samples. The anisotropy can be described macroscopically by measuring the tensile strength and modulus in the longitudinal and transverse direction. The ratio between the longitudinal and transverse property decreases proportionally to the thickness of the test sample. This reduction corresponded to the reduction in the shear field as the thickness of the mold was increased. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1713–1718, 2003 相似文献
8.
A novel liquid crystalline polyester–polyurethane (LCPU) that contains polyester mesogenic units was synthesized in the present work. Through a careful investigation of the structure and morphology of the LCPU, it was found that the home‐synthesized LCPU is a highly birefringent thermotropic nematic liquid crystal. After being blended with bisphenol‐A epoxy, the liquid crystalline polymer can, simultaneously, improve the impact strength and the glass transition temperature as well as the tensile strength and the tensile modulus of the blends. It was proved to be an efficient toughening agent for epoxy without the expense of other properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 783–787, 2003 相似文献
9.
A series of crosslinked liquid crystalline polymers and corresponding uncrosslinked liquid crystalline polymers were prepared by graft copolymerization. Their liquid crystalline properties were characterized by differential scanning calorimetry, polarizing optical microscopy, and X‐ray diffraction measurements. The results showed that the crosslinking obtained in the isotropic state and the introduction of nonmesogenic crosslinking units into a polymeric structure could cause additional reduction of the clearing point (Ti) of the crosslinked polymers, compared with the corresponding uncrosslinked polymers. The crosslinked polymers (P‐2–P‐4) with a low crosslinking density exhibited cholesteric phases as did the uncrosslinked polymers. In contrast, a high crosslinking density made the crosslinked polymer P‐5 lose its thermotropic liquid crystalline property. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 773–778, 2004 相似文献
10.
A series of liquid‐crystalline (LC) polysiloxanes were synthesized by two different cholesteric monomers, cholest‐5‐en‐3‐ol(3β)‐10‐undecenoate and cholesteryloxycarbonylmethyl 4‐allyloxybenzoate. The chemical structures and LC properties of the monomers and polymers were characterized by various experimental techniques, including Fourier transform infrared spectroscopy, 1H‐NMR, elemental analysis, differential scanning calorimetry, and polarized optical microscopy. The specific rotation absolute values increased with increasing rigid spacers between the main chain and the mesogens. All of the polymers exhibited thermotropic LC properties and revealed cholesteric phases with very wide mesophase temperature ranges. With a reduction in the soft‐space groups in the series of polymers, the glass‐transition temperature and the isotropic temperature increased slightly on heating cycles. Reflection spectra of the cholesteric mesophase of the series of polymers showed that the reflected wavelength shifted to short wavelengths with decreasing soft‐space groups in the polymers systems, which suggested that the helical pitch became shorter with increasing rigid‐space groups. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
11.
We developed an energy model derived from the first principle for multilayer configurations to enhance our understanding of the interfacial property between two polymers under shear deformation. We carried out specific experiments satisfying the boundary and loading conditions of the model to obtain the energy dissipation factor (β), which characterized and quantified the interfacial property. Two polymer pairs, the miscible system polystyrene (PS)/high‐impact polystyrene (HIPS) and the immiscible system polycarbonate (PC)/liquid‐crystal polymer (LCP), were investigated. As expected, β was zero for PS/HIPS, reflecting the strong interaction at the PS/HIPS interface. For PC/LCP, the value of β could be significant, and its behavior was complex; it reflected the thermal sensitivity and thermal history effect of the PC/LCP interface. A positive value of β also indicated the possibility of slip at the interface and provided an explanation for the negative deviation from the rule of mixture. This complex behavior of the interface was attributed to the changes in the phases and microstructure of LCPs and, therefore, the LCP/PC interface as thermal cycling was carried out in the melting/nematic range of LCPs. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 258–269, 2003 相似文献
12.
Thermally conductive resins are needed for bipolar plates in fuel cells. Currently, the materials used for these bipolar plates often contain a single type of graphite in a thermosetting resin. In this study, varying amounts of four different types of polyacrylonitrile carbon fillers (Ketjenblack carbon black, Thermocarb synthetic graphite, Fortafil 243 carbon fiber, and Panex 30 carbon fiber) were added to a thermoplastic matrix (Vectra A950RX Liquid Crystal Polymer), with the resulting resins tested for through‐plane and in‐plane thermal conductivity. There are two unique contributions of this work. The first contribution is the use of the Nielsen model for the through‐plane thermal conductivity as a function of the single filler volume fraction. The model fits the data for all composites well. The second contribution is the development of a new, accurate, empirical model to predict the in‐plane thermal conductivity for all resins containing synthetic graphite or carbon fiber. Both of these models will form the basis for the development of new thermal conductivity models for composites with multiple fillers for fuel cell bipolar plate applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 相似文献
13.
A new mesogenic crosslinking agent M‐1 was synthesized to minimize the perturbations of a nonmesogenic crosslinking agent for liquid crystalline elastomers. The synthesis of new side‐chain liquid crystalline elastomers containing a rigid mesogenic crosslinking agent M‐1 and a nematic monomer M‐2 is described by a one‐step hydrosilylation reaction. The chemical structures of the obtained monomers and elastomers were confirmed by 1H NMR and FTIR spectroscopy. The mesomorphic properties and phase behavior were investigated by differential scanning calorimetry, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the crosslinking units on the phase behavior is discussed. The elastomers containing less than 15 mol % of the crosslinking units showed elasticity, reversible phase transition, and nematic‐threaded texture. However, when the crosslinking density reached 21.6 mol %, the mesophase of polymer P‐8 disappears. The adoption of a mesogenic crosslinking agent diminishes the perturbation of a nonmesogenic crosslinking agent on mesophase of liquid crystalline elastomers, and isotropic temperature and a mesomorphic temperature range slightly decreased with increasing content of the crosslinking agent. In addition, X‐ray analysis shows nematic polydomain network polymers can transform into smectic monodomain by stress induction, leading to the orientation formation macroscopically. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1736–1742, 2004 相似文献
14.
Robert A. Bubeck Lowell S. Thomas Stanley Rendon Wesley R. Burghardt Alexander Hexemer Daniel A. Fischer 《应用聚合物科学杂志》2005,98(6):2473-2480
The process of injection‐molding net‐shape parts from thermotropic liquid‐crystalline polymers results in a skin‐core macrostructure. The underlying orientation in the core and the skin may differ both in magnitude and direction. A combination of near‐edge X‐ray absorption fine structure (NEXAFS) spectroscopy and two‐dimensional wide‐angle X‐ray scattering (2D WAXS) in transmission was used to characterize the orientation in injection‐molded plaques fabricated from thermotropic liquid‐crystalline copolyesters based on either 4,4′‐dihydroxy‐α‐methylstilbene or 6‐hydroxy‐2‐naphthoic acid/6‐hydroxybenzoic acid. NEXAFS is presented as a noninvasive in situ means of determining surface layer orientation that samples to a depth of as little as 2 nm and does not require slicing or ultramicrotoming of the samples. The effects of various processing conditions on the surface orientation in the region of the centerline of square injection‐molded plaques are presented and discussed. Comparisons are made between orientation parameters obtained by 2D WAXS in transmission, which is dominated by the microstructure in the core, and the NEXAFS technique. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2473–2480, 2005 相似文献
15.
This report describes how the degree of deacetylation and molecular weight of chitosan and the concentrations of sodium chloride and malic acid affect the formation of lyotropic chitosan liquid crystals. Chitosan samples of various degrees of deacetylation were prepared from β‐chitin that was isolated from squid pens. They were degraded by ultrasonic irradiation to various molecular weights. The critical concentrations forming chitosan liquid crystals were determined with a polarized microscope. A chitosan sample with a degree of deacetylation of 67.2–83.6% formed cholesteric lyotropic liquid crystals when it was dissolved in 0.37–2.59M malic acid. The critical concentrations increased with increasing degrees of deacetylation of chitosan. They decreased with increasing molecular weights or increasing concentrations of sodium chloride and malic acid. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 相似文献
16.
A series of new cholesteric liquid‐crystalline polysiloxanes ( P1 – P5 ) derived from menthyl groups were synthesized. The chemical structures of the monomers and polymers were characterized with Fourier transform infrared, 1H‐NMR, 13C‐NMR, and elemental analyses. The mesomorphic properties and thermal behavior were investigated with differential scanning calorimetry, polarizing optical microscopy, thermogravimetric analysis, and X‐ray diffraction measurements. The influence of the polymer structure on the thermal behavior was discussed. The monomer diosgeninyl 4‐allyloxybenzoate exhibited a typical cholesteric oily‐streak texture and a focal‐conic texture. Polymers P1 – P5 showed thermotropic liquid‐crystalline properties. P1 displayed a smectic fan‐shaped texture, P2 – P5 showed a cholesteric Grandjean texture, and P6 and P7 did not show mesomorphic properties. The experimental results demonstrated that the glass‐transition temperature and the clearing temperature decreased, and the mesomorphic properties weakened with an increasing concentration of menthyl units. Moreover, P1 – P5 exhibited wide mesophase temperature ranges and high thermal stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5559–5565, 2006 相似文献
17.
Julia A. King Troy M. Tambling Faith A. Morrison Jason M. Keith Andrew J. Cole Rachel M. Pagel 《应用聚合物科学杂志》2008,108(3):1646-1656
Adding conductive carbon fillers to insulating resins increases the composite electrical and thermal conductivity. Often, enough of a single type of carbon filler is added to achieve the desired conductivity while still allowing the material to be molded into a bipolar plate for a fuel cell. In this study, various amounts of three different carbons (carbon black, synthetic graphite particles, and carbon fiber) were added to Vectra A950RX liquid‐crystal polymer. The rheological properties of the resulting single‐filler composites were measured. In addition, the rheological properties of composites containing combinations of different carbon fillers were studied via a factorial design. In all cases, the viscosity increased with increasing filler volume fraction and followed a shear‐thinning power‐law model. The factorial design results indicated that each of the single fillers and all the filler combinations caused a statistically significant increase in the composite viscosity when compared at a shear rate of 500 s?1 or at a stress of 105 Pa. For composites containing synthetic graphite particles and/or carbon fiber, the viscosity variation with the volume fraction of carbon followed a modified Maron–Pierce equation. When compared at a constant volume fraction of carbon, composites containing carbon black showed viscosity enhancement above and beyond that shown by the other composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
18.
Rocio Guadalupe Santos‐Martell Leticia Larios‐López Rosa Julia Rodríguez‐González Bertrand Donnio Daniel Guillon Dámaso Navarro‐Rodríguez 《应用聚合物科学杂志》2011,120(4):2074-2081
Poly(4‐vinylpyridine)s (P4VPs) fully and partially quaternized with dialkyloxyterphenyl groups were synthesized and characterized. These new polymers developed both liquid‐crystalline (LC) properties and a light emission (luminescence) in the blue region. The mesomorphic behavior of the polymers was initially characterized by differential scanning calorimetry and polarizing optical microscopy and was further corroborated by X‐ray diffraction analyses. The X‐ray diffraction patterns showed in the low‐angles region several equidistant diffraction peaks (d001, d002, d003, …) and in the wide‐angles region a broad peak typical of nonordered mesophases. From d001 and the length of the monomers, we deduced that the molecular arrangement in the mesophase corresponded to a double‐layered stacking of molecules with mesogens tilted with respect to the smectic plane and the backbones sandwiched between. In this arrangement, the different parts of mesogens are segregated from one another in layered domains. The longer smectic periods observed for copolymers indicated that the nonsubstituted pyridine cycles were sandwiched between two smectic layers. The emission spectra of these polymers were characterized by a broad signal centered at 365 nm. The combination of LC properties with luminescence in the polymers is interesting for the preparation of thin films with aligned emitters, particularly for linearly polarized light emission. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
19.
In a previous article, we reported on the evolution of the morphological and rheological properties along the length extruder for blends of a liquid‐crystalline polymer (LCP), Rodrun LC3000, and polypropylene (PP). In this work, we extended this study to compatibilized PP/Rodrun LC3000 blends, containing 10 wt % LCP and different compatibilizers, to determine the influence of the addition of a compatibilizer during the processing and, consequently, on the final properties of such systems. The results revealed that the addition of compatibilizers led to a decrease in the mean diameters of the LCP structures, in comparison with those presented by the noncompatibilized blend containing the same LCP content. This phenomenon occurred more quickly for those blends in which compatibilization was carried out in an efficient way. Linear oscillatory shear was mainly sensitive to the type of morphology present in the blends, whereas nonlinear oscillatory shear was more sensitive to the evolution in the droplet/fibril size and along the extruder length. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 347–359, 2006 相似文献
20.
《国际聚合物材料杂志》2012,61(3-4):243-248
Abstract In this article emphasis will be placed on selectively from 45 papers presented at the spring meeting and 33 papers also presented at the fall meeting. 相似文献