首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper develops an enriched element‐failure method for delamination analysis of composite structures. This method combines discontinuous enrichments in the extended finite element method and element‐failure concepts in the element‐failure method within the finite element framework. An improved discontinuous enrichment function is presented to effectively model the kinked discontinuities; and, based on fracture mechanics, a general near‐tip enrichment function is also derived from the asymptotic displacement fields to represent the discontinuity and local stress intensification around the crack‐tip. The delamination is treated as a crack problem that is represented by the discontinuous enrichment functions and then the enrichments are transformed to external nodal forces applied to nodes around the crack. The crack and its propagation are modeled by the ‘failed elements’ that are applied to the external nodal forces. Delamination and crack kinking problems can be solved simultaneously without remeshing the model or re‐assembling the stiffness matrix with this method. Examples are used to demonstrate the application of the proposed method to delamination analysis. The validity of the proposed method is verified and the simulation results show that both interlaminar delamination and crack kinking (intralaminar crack) occur in the cross‐ply laminated plate, which is observed in the experiment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
We introduce a framework that adapts local and non-local continuum models to simulate static fracture problems. Non-local models based on the peridynamic theory are promising for the simulation of fracture, as they allow discontinuities in the displacement field. However, they remain computationally expensive. As an alternative, we develop an adaptive coupling technique based on the morphing method to restrict the non-local model adaptively during the evolution of the fracture. The rest of the structure is described by local continuum mechanics. We conduct all simulations in three dimensions, using the relevant discretization scheme in each domain, i.e., the discontinuous Galerkin finite element method in the peridynamic domain and the continuous finite element method in the local continuum mechanics domain.  相似文献   

3.
This paper presents new three‐dimensional finite elements with embedded strong discontinuities in the small strain infinitesimal range. The goal is to model localized surfaces of failure in solids, such as cracks at fracture, through enhancements of the finite elements that capture the propagating discontinuities of the displacement field in the element interiors. In this way, such surfaces of discontinuity can be sharply resolved in general meshes not necessarily related to the detailed geometry of the surface, unknown a priori. An important issue is also the consideration of general finite element formulations in the developments (e.g., basic displacement‐based, mixed or enhanced assumed strain finite element formulations), as needed to optimally resolve the continuum problem in the bulk. The actual modeling of the discontinuity effects, including the incorporation of the cohesive law defining the discontinuity constitutive response, is carried out at the element level with the proper enhancement of the discrete strain field of the element. The added elemental degrees of freedom approximate the displacement jumps associated with the discontinuity and are defined independently from element to element, thus allowing their static condensation at the element level without affecting the global mechanical problem in terms of the number and topology of the global degrees of freedom. In fact, this global‐local structure of the finite element methods developed in this work arises naturally from a multi‐scale characterization of these localized solutions, with the discontinuities understood to appear in the small scales, thus leading directly to these computationally efficient numerical methods for their numerical resolution, easily incorporated to an existing finite element code. The focus in this paper is on the development of finite elements incorporating a linear interpolation of the displacement jumps in the general three‐dimensional setting. These interpolations are shown to be necessary for hexahedral elements to avoid the so‐called stress locking that occurs with simpler constant approximations of the jumps (namely, a spurious transfer of stresses across the discontinuity not allowing its full release and, hence, resulting in an overstiff or locked numerical solution). The design of the new finite elements is accomplished in this work by a direct identification of the separation modes to be incorporated in the discrete strain field of the element, rather than from an assumed discontinuous interpolation of the displacements, assuring with this approach their locking‐free response by design. An additional issue addressed in the paper is the geometric characterization and propagation of the discontinuity surfaces in the general three‐dimensional setting of interest here. The paper includes a series of numerical simulations illustrating and evaluating the properties of the new finite elements. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents the extension of some finite elements with embedded strong discontinuities to the fully transient range with the focus on dynamic fracture. Cracks and shear bands are modeled in this setting as discontinuities of the displacement field, the so-called strong discontinuities, propagating through the continuum. These discontinuities are embedded into the finite elements through the proper enhancement of the discrete strain field of the element. General elements, like displacement or assumed strain based elements, can be considered in this framework, capturing sharply the kinematics of the discontinuity for all these cases. The local character of the enhancement (local in the sense of defined at the element level, independently for each element) allows the static condensation of the different local parameters considered in the definition of the displacement jumps. All these features lead to an efficient formulation for the modeling of fracture in solids, very easily incorporated in an existing general finite element code due to its modularity. We investigate in this paper the use of this finite element formulation for the special challenges that the dynamic range leads to. Specifically, we consider the modeling of failure mode transitions in ductile materials and crack branching in brittle solids. To illustrate the performance of the proposed formulation, we present a series of numerical simulations of these cases with detailed comparisons with experimental and other numerical results reported in the literature. We conclude that these finite element methods handle well these dynamic problems, still maintaining the aforementioned features of computational efficiency and modularity.  相似文献   

5.
This paper is concerned with the incorporation of displacement discontinuities into a continuum theory of elastoplasticity for the modelling of localization processes such as cracking in brittle materials. Based on the strong discontinuity approach (SDA) (Computational Mechanics 1993; 12: 277–296) mesh objective 2D and 3D finite element formulations are developed using linear and quadratic 2D elements as well as 8‐noded 3D elements. In the formulation of the finite‐element model proposed in the paper, the analogy with standard formulations is emphasized. The parameter defining the amplitude of the displacement jump within the finite element is condensed out at the material level without employing the standard static condensation technique. This approach results in linearized constitutive equations formally identical to continuum models. Therefore, the standard return mapping algorithm is used to solve the non‐linear equations. In analogy to concepts used in continuum smeared crack models, a rotating formulation of the SDA is proposed in addition to the standard concept of fixed discontinuities. It is shown that the rotating localization approach reduces locking effects observed in analyses based on fixed localization directions. The applicability of the proposed SDA finite‐element model as well as its numerical performance is investigated by means of a three‐dimensional ultimate load analysis of a steel anchor embedded in a concrete block subjected to a shear force. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Taking the strong discontinuity approach as a framework for modelling displacement discontinuities and strain localization phenomena, this work extends previous results in infinitesimal strain settings to finite deformation scenarios. By means of the strong discontinuity analysis, and taking isotropic damage models as target continuum (stress–strain) constitutive equation, projected discrete (tractions–displacement jumps) constitutive models are derived, together with the strong discontinuity conditions that restrict the stress states at the discontinuous regime. A variable bandwidth model, to automatically induce those strong discontinuity conditions, and a discontinuous bifurcation procedure, to determine the initiation and propagation of the discontinuity, are briefly sketched. The large strain counterpart of a non‐symmetric finite element with embedded discontinuities, frequently considered in the strong discontinuity approach for infinitesimal strains, is then presented. Finally, some numerical experiments display the theoretical issues, and emphasize the role of the large strain kinematics in the obtained results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
A new model is presented for the simulation of delamination in laminated composite materials. A key feature is that the material structure and the finite element mesh are uncoupled. The displacement discontinuities that arise during the delamination process are described mathematically using discontinuous functions. This leads naturally to a set of coupled equations for the continuous and the discontinuous parts of the response. Discontinuities can pass through solid finite elements arbitrarily, with the displacement jump continuous across element boundaries. The performance of the model is demonstrated for several problems of delamination and geometric instability. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, a method for evaluating discontinuous displacement and strain distributions using digital image correlation (DIC) is proposed. A finite element mesh-based DIC method is used for measuring displacements while taking into account displacement and strain discontinuities. Smoothed displacements are thus obtained, and strains are computed from the measured displacements using the finite element mesh again. Discontinuous strains can be obtained by the proposed method using a split finite element mesh. The effectiveness of this method is validated by applying it to measure the displacement and strain in a triaxially woven fabric composite containing numerous free boundaries, to measure displacements around a crack and the displacement and strain around the interface between dissimilar materials. Results show that the discontinuous displacement and strain distributions can be measured by the proposed method. The proposed method is expected to be applicable for the experimental evaluations of various structures and members, including displacement and strain discontinuities such as free boundaries, cracks, and interfaces.  相似文献   

9.
The computation of elastic continua is widely used in today's engineering practice, and finite element models yield a reasonable approximation of the physically observed behaviour. In contrast, the failure of materials due to overloading can be seen as a sequence of discontinuous effects finally leading to a system failure. Until now, it has not been possible to sufficiently predict this process with numerical simulations. It has recently been shown that discrete models like lattice spring models are a promising alternative to finite element models for computing the breakdown of materials because of static overstress and fatigue. In this paper, we will address one of the downsides of current lattice spring models, the need for a periodic mesh leading to a mesh‐induced anisotropy of material failure in simulations. We will show how to derive irregular cells that still behave as part of a homogeneous continuum irrespectively of their shape and which should be able to eliminate mesh‐induced anisotropy. In addition, no restraints concerning the material stiffness tensor are introduced, which allows the simulation of non‐isotropic materials. Finally, we compare the elastic response of the presented model with present lattice spring models using mechanical systems with a known analytical stress field. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The main objective of this paper is to develop a methodology to model dynamic loading of various discontinuous media. Two methods for modeling non‐linear waves in a media with multiple discontinuities are considered. The first one, a discrete method, is based on the Simple Common Plane contact algorithm. This method can be applied both to compliant contacts characterized by finite thickness and elastic moduli (such as joints in geomechanics) as well as to non‐compliant frictional contacts traditionally described by the slide lines in finite element/finite difference codes. The second one, a continuum method, assumes that the contacts are not compliant and can be modeled as one or several weakness planes cutting through the elements of the computational mesh. Both discrete and continuum methods described in the paper can be applied to derive equivalent continuum properties for media with multiple discontinuities. An example of such application for a randomly jointed media is given in the paper. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, a novel constitutive model combining continuum damage with embedded discontinuity is developed for explicit dynamic analyses of quasi‐brittle failure phenomena. The model is capable of describing the rate‐dependent behavior in dynamics and the three phases in failure of quasi‐brittle materials. The first phase is always linear elastic, followed by the second phase corresponding to fracture‐process zone creation, represented with rate‐dependent continuum damage with isotropic hardening formulated by utilizing consistency approach. The third and final phase, involving nonlinear softening, is formulated by using an embedded displacement discontinuity model with constant displacement jumps both in normal and tangential directions. The proposed model is capable of describing the rate‐dependent ductile to brittle transition typical of cohesive materials (e.g., rocks and ice). The model is implemented in the finite element setting by using the CST elements. The displacement jump vector is solved for implicitly at the local (finite element) level along with a viscoplastic return mapping algorithm, whereas the global equations of motion are solved with explicit time‐stepping scheme. The model performance is illustrated by several numerical simulations, including both material point and structural tests. The final validation example concerns the dynamic Brazilian disc test on rock material under plane stress assumption. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Extensions of a new technique for the finite element modelling of cracks with multiple branches, multiple holes and cracks emanating from holes are presented. This extended finite element method (X‐FEM) allows the representation of crack discontinuities and voids independently of the mesh. A standard displacement‐based approximation is enriched by incorporating discontinuous fields through a partition of unity method. A methodology that constructs the enriched approximation based on the interaction of the discontinuous geometric features with the mesh is developed. Computation of the stress intensity factors (SIF) in different examples involving branched and intersecting cracks as well as cracks emanating from holes are presented to demonstrate the accuracy and the robustness of the proposed technique. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
基于XFEM的强震区砼重力坝开裂与配筋抗震措施研究   总被引:2,自引:2,他引:0       下载免费PDF全文
已有震害表明,混凝土坝遭遇强烈地震将不可避免地产生开裂。扩展有限元法(XFEM)通过在相关节点的影响域上富集非连续位移模式,使得对非连续位移场的表征独立于单元边界,可以有效描述混凝土中的裂纹扩展。基于扩展有限元模型,采用合理的地震波动模型对国内某混凝土重力坝强震下的动力破坏过程进行了分析;针对大坝破坏情况,应用嵌入式滑移模型模拟了混凝土重力坝配筋前后的地震响应和破坏状况,据此评价局部配筋的抗震效果。研究表明,局部配置抗震钢筋虽无法防止裂缝的发生,但可有效限制坝体裂缝的开裂扩展范围及深度,减少裂缝的开度,有效改善坝体的抗震性能。  相似文献   

14.
Standard domain-based discretization methods that have been developed for continuous media are not well suited for treating propagating (or evolving) discontinuities. Indeed, they are approximation methods for the solution of partial differential equations, which are valid on a domain. Discontinuities divide this domain into two or more parts. Conventionally, special interface elements methods are placed a priori between the continuum finite elements to capture discontinuities at locations where they are expected to emerge. More recently, discretization methods have been proposed, which are more flexible than standard finite element methods, while having the potential to capture propagating discontinuities in a robust, efficient and accurate manner. Examples are meshfree methods, finite element methods that exploit the partition-of-unity property of finite element shape functions, and discontinuous Galerkin methods. In this contribution, we shall present an overview of these novel discretization techniques for capturing propagating discontinuities, including a comparison of their similarities and differences.  相似文献   

15.
In this paper, a cohesive finite element method (FEM) is proposed for a quasi-continuum (QC), i.e. a continuum model that utilizes the information of underlying atomistic microstructures. Most cohesive laws used in conventional cohesive FEMs are based on either empirical or idealized constitutive models that do not accurately reflect the actual lattice structures. The cohesive quasi-continuum finite element method, or cohesive QC-FEM in short, is a step forward in the sense that: (1) the cohesive relation between interface traction and displacement opening is now obtained based on atomistic potentials along the interface, rather than empirical assumptions; (2) it allows the local QC method to simulate certain inhomogeneous deformation patterns. To this end, we introduce an interface or discontinuous Cauchy–Born rule so the interfacial cohesive laws are consistent with the surface separation kinematics as well as the atomistically enriched hyperelasticity of the solid. Therefore, one can simulate inhomogeneous or discontinuous displacement fields by using a simple local QC model. A numerical example of a screw dislocation propagation has been carried out to demonstrate the validity, efficiency, and versatility of the method. An erratum to this article can be found at  相似文献   

16.
In this work we discuss the finite element model using the embedded discontinuity of the strain and displacement field, for dealing with a problem of localized failure in heterogeneous materials by using a structured finite element mesh. On the chosen 1D model problem we develop all the pertinent details of such a finite element approximation. We demonstrate the presented model capabilities for representing not only failure states typical of a slender structure, with crack-induced failure in an elastic structure, but also the failure state of a massive structure, with combined diffuse (process zone) and localized cracking. A robust operator split solution procedure is developed for the present model taking into account the subtle difference between the types of discontinuities, where the strain discontinuity iteration is handled within global loop for computing the nodal displacement, while the displacement discontinuity iteration is carried out within a local, element-wise computation, carried out in parallel with the Gauss-point computations of the plastic strains and hardening variables. The robust performance of the proposed solution procedure is illustrated by a couple of numerical examples. Concluding remarks are stated regarding the class of problems where embedded discontinuity finite element method (ED-FEM) can be used as a favorite choice with respect to extended FEM (X-FEM).  相似文献   

17.
18.
Results on the asymptotic analysis of crack tip fields in elastic-plastic single crystals are presented and some preliminary results of finite element solutions for cracked solids of this type are summarized. In the cases studied, involving plane strain tensile and anti-plane shear cracks in ideally plastic f c c and b c c crystals, analyzed within conventional small displacement gradient assumptions, the asymptotic analyses reveal striking discontinuous fields at the crack tip.For the stationary crack the stress state is found to be locally uniform in each of a family of angular sectors at the crack tip, but to jump discontinuously at sector boundaries, which are also the surfaces of shear discontinuities in the displacement field. For the quasi-statically growing crack the stress state is fully continuous from one near-tip angular sector to the next, but now some of the sectors involve elastic unloading from, and reloading to, a yielded state, and shear discontinuities of the velocity field develop at sector boundaries. In an anti-plane case studied, inclusion of inertial terms for (dynamically) growing cracks restores a discontinuous stress field at the tip which moves through the material as an elastic-plastic shock wave. For high symmetry crack orientations relative to the crystal, the discontinuity surfaces are sometimes coincident with the active crystal slip planes, but as often lie perpendicular to the family of active slip planes so that the discontinuities correspond to a kinking mode of shear.The finite element studies so far attempted, simulating the ideally plastic material model in a small displacement gradient type program, appear to be consistent with the asymptotic analyses. Small scale yielding solutions confirm the expected discontinuities, within limits of mesh resolution, of displacement for a stationary crack and of velocity for quasi-static growth. Further, the discontinuities apparently extend well into the near-tip plastic zone. A finite element formulation suitable for arbitrary deformation has been used to solve for the plane strain tension of a Taylor-hardening crystal panel containing, a center crack with an initially rounded tip. This shows effects due to lattice rotation, which distinguishes the regular versus kinking shear modes of crack tip relaxation. and holds promise for exploring the mechanics of crack opening at the tip.  相似文献   

19.
Intergranular fracture is a dominant mode of failure in ultrafine grained materials. In the present study, the atomistic mechanisms of grain-boundary debonding during intergranular fracture in aluminum are modeled using a coupled molecular dynamics—finite element simulation. Using a statistical mechanics approach, a cohesive-zone law in the form of a traction–displacement constitutive relationship, characterizing the load transfer across the plane of a growing edge crack, is extracted from atomistic simulations and then recast in a form suitable for inclusion within a continuum finite element model. The cohesive-zone law derived by the presented technique is free of finite size effects and is statistically representative for describing the interfacial debonding of a grain boundary (GB) interface examined at atomic length scales. By incorporating the cohesive-zone law in cohesive-zone finite elements, the debonding of a GB interface can be simulated in a coupled continuum–atomistic model, in which a crack starts in the continuum environment, smoothly penetrates the continuum–atomistic interface, and continues its propagation in the atomistic environment. This study is a step toward relating atomistically derived decohesion laws to macroscopic predictions of fracture and constructing multiscale models for nanocrystalline and ultrafine grained materials.  相似文献   

20.
This paper considers the analysis of localized failures and fracture of solids under antiplane conditions. We consider the longitudinal cracking of shafts in torsion, with the crack propagating through the cross section, besides pure antiplane problems (that is, with loading perpendicular to the plane of analysis). The main goal is the theoretical characterization and the numerical resolution of strong discontinuities in this setting, that is, discontinuities of the antiplane displacement field modeling the cracks. A multi-scale framework is considered, by which the discontinuities are treated locally in the (global) antiplane mechanical boundary value problem of interest, incorporating effectively the contributions of the discontinuities to the failure of the solid. We can identify among these contributions, besides the change in the stiffness of the solid or structural member, the localized energy dissipation associated to the cohesive law governing the physical response of the discontinuity surfaces. A main outcome of this approach is the development of new finite elements with embedded discontinuities for the antiplane problem that capture these solutions, and physical effects, locally at the element level. This local structure allows the static condensation at the element level of the degrees of freedom considered in the approximation of the antiplane displacement jumps along the discontinuity. In this way, the new elements result not only in a cost efficient computational tool of analysis for these problems, but also in a technique that can be easily incorporated in an existing finite element code, while resolving objectively those physical dissipative effects along the localized surfaces of failure. We develop, in particular, quadrilateral finite elements with the embedded discontinuities exhibiting constant and linear approximations of the displacement jumps, showing the superior performance of the latter given the stress locking associated with quadrilateral elements with constant jumps only. This limitation manifests itself in spurious transfers of stresses across the discontinuities, leading to severe oscillations in the stress field and an overall excessively stiff solution of the problem. These features are illustrated with several numerical examples, including convergence tests and validations with analytical results existing in the literature, showing in the process the treatment of characteristic situations like snap-backs, commonly encountered in the modeling of these structural members at failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号