首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article relates the fibrillation of liquid crystalline polymer (LCP) under shear in its blend with a thermoplastic polymer (TP) to the relative rate of energy utilization in the LCP and TP phases. The development of a criterion based on the energy relationship for predicting LCP fibrillation in the blend is discussed. The formation of LCP fibers in the blends of LCP with polycarbonate (PC), polyethylene naphthalate (PEN), high‐density polyethylene (HDPE), polypropylene (PP), and silica‐filled polypropylene (PP) was studied to validate the criterion and to demonstrate its applicability. For all the blends, viscosity data were obtained by using a capillary rheometer, which was subsequently used to estimate the rate of energy utilization in the LCP and the matrix phases. The predictions based on the proposed criterion were verified through the morphological investigations carried out on the extrudates obtained from the same capillary experiments. The energy‐based criterion was easy to implement, could account for the effect of variable LCP concentration and fillers in the blend, and could provide reliable predictions for a variety of LCP/TP blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3314–3324, 2003  相似文献   

2.
A fumed hydrophilic nano‐silica‐filled polypropylene (PP) composite was blended with a liquid‐crystalline polymer (LCP; Rodrun LC5000). The preblended polymer blend was extruded through a capillary die; this was followed by a series of rheological and morphological characterizations. The viscosity of the PP matrix increased with the addition of the hydrophilic nano‐silica. At shear rates between 50 and 200 s?1, the composite displays marked shear‐thinning characteristics. However, the incorporation of LC5000 in the PP composite eliminated the shear‐thinning characteristic, which suggests that LC5000 destroyed the agglomerated nano‐silica network in the PP matrix. Although the viscosity ratio of LCP/PP was reduced after the addition of nano‐silica fillers, the LCP phases existed as droplets and ellipsoids. The nano‐silicas were concentrated in the LC5000 phase, which hindered the formation of LCP fibers when processed at high shear deformation. We carried out surface modification of the hydrophilic nano‐silica to investigate the effect of modified nano‐silica (M‐silica) on the morphology of the PP/LC5000 blend system. Ethanol was successfully grafted onto the nano‐silica surface with a controlled grafting ratio. The viscosity was reduced for PP filled with ethanol‐M‐silica when compared to the system filled with untreated hydrophilic nano‐silica. The LC5000 in the (PP/M‐silica)/LC5000 blend existed mainly in the form of fibrils. At high shear rates (e.g., 3000 s?1), the LC5000 fibril network was formed at the skin region of the extrudates. The exclusion of nano‐silica in the LC5000 phase and the increased viscosity of the matrix were responsible for the morphological changes of the LCP phase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1484–1492, 2003  相似文献   

3.
Thermally induced phase separation in liquid crystalline polymer (LCP)/polycarbonate (PC) blends was investigated in this study. The LCP used is a main‐chain type copolyester comprised of p‐hydroxybenoic acid and 6‐hydroxy‐2‐naphthoic acid. Specimens for microscopic observation were prepared by melt blending. The specimens were heated to a preselected temperature, at which they were held for isothermal phase separation. The preselected temperatures used in this study were 265, 290, and 300°C. The LCP contents used were 10, 20, and 50 wt %. These parameters corresponded to different positions on the phase diagram of the blends. The development of the phase‐separated morphology in the blends was monitored in real time and space. It was observed that an initial rapid phase separation was followed by the coarsening of the dispersed domains. The blends developed into various types of phase‐separated morphology, depending on the concentration and temperature at which phase separation occurred. The following coarsening mechanisms of the phase‐separated domains were observed in the late stages of the phase separation in these blends: (i) diffusion and coalescence of the LCP‐rich droplets; (ii) vanishing of the PC‐rich domains following the evaporation‐condensation mechanism; and (iii) breakage and shrinkage of the LCP‐rich domains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
We developed an energy model derived from the first principle for multilayer configurations to enhance our understanding of the interfacial property between two polymers under shear deformation. We carried out specific experiments satisfying the boundary and loading conditions of the model to obtain the energy dissipation factor (β), which characterized and quantified the interfacial property. Two polymer pairs, the miscible system polystyrene (PS)/high‐impact polystyrene (HIPS) and the immiscible system polycarbonate (PC)/liquid‐crystal polymer (LCP), were investigated. As expected, β was zero for PS/HIPS, reflecting the strong interaction at the PS/HIPS interface. For PC/LCP, the value of β could be significant, and its behavior was complex; it reflected the thermal sensitivity and thermal history effect of the PC/LCP interface. A positive value of β also indicated the possibility of slip at the interface and provided an explanation for the negative deviation from the rule of mixture. This complex behavior of the interface was attributed to the changes in the phases and microstructure of LCPs and, therefore, the LCP/PC interface as thermal cycling was carried out in the melting/nematic range of LCPs. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 258–269, 2003  相似文献   

5.
A study of a typical intercalated structure of a thermotropic liquid crystalline polymer (TLCP) with organoclay was performed to elucidate the influence of intercalated organoclay on the TLCP molecules, especially on their liquid crystallinity, thermal and rheological properties. The intercalated structures were confirmed in TLCP and organoclay formed molecular interactions with TLCP molecules in the system. Such intercalated structures caused the glass transition temperature of the nanocomposite to become invisible in thermal measurement and also caused loss of liquid crystallinity. The TLCP molecules inside the organoclay galleries showed higher thermal stability and transition temperatures, but the orderly structure of the TLCP molecules outside the galleries was destroyed by the organoclay, causing the TLCP to display lower thermal stability and transition temperatures than pristine TLCP. At 185°C, where TLCP is in the nematic phase, the nanocomposite had three orders of magnitude higher viscosity in the linear viscoelastic region than that of TLCP, with chain mobility and relaxation time slowed due to the intercalated effects in the nanocomposite. Steady shear altered the domain sizes and oriented the highly anisotropic organoclay layers or tactoids along the shear direction.  相似文献   

6.
The phase diagram of blends of liquid crystalline polymer (LCP) and polycarbonate (PC) was constructed. The effect of temperature on morphological development in melt‐blended samples was examined with a polarized light microscope, in conjunction with a heating stage. Phase separation in the blend was observed as the temperature was increased. For a particular LCP/PC blend composition, two‐phase separation temperatures (Tsp1 and Tsp2) were determined. Consequently, the corresponding phase diagram relating to phase separation was constructed. It was divided into three regions. No phase separation occurred when the blend was below Tsp1. However, a slight phase separation was detected when the temperature was between Tsp1 and Tsp2. Moreover, pronounced phase separation was observed when the blend was at a temperature above Tsp2. The phase‐separated structure varied according to the initial composition of the blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
The liquid crystalline polymer (LCP) and polyethylene terephthalate (PET) were blended in an elastic melt extruder to make samples having 20, 40, 60, 80, and 100 wt % of LCP. Morphology of these samples was studied using scanning electron microscopy. The steady state shear viscosity (η), dynamic complex viscosity (η*) and first normal stress difference (N1) were evaluated and compared at two temperatures: 265°C, at which LCP was in solid state, and 285°C, at which LCP was in molten state. The PET was in molten state at both the temperatures. The shear viscosity of the studied blends displayed its dependence on composition and shear rate. A maxima was observed in viscosity versus composition plot corresponding to 80/20 LCP/PET blend. The N1 increased with LCP loading in PET and with the increased asymmetry of LCP droplets. The N1 also varied with the shear stress in two stages; the first stage demonstrated elastic deformation, whereas second stage displayed dominant plastic deformation of LCP droplets. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2212–2218, 2007  相似文献   

8.
The mechanical, morphological and thermal properties of the binary and ternary blends of a fluorocarbon elastomer (FKM), an acrylic elastomer (ACM) and a liquid crystalline polymer (LCP) were investigated. The ternary blends were prepared by varying the amount of the LCP but fixing the ratio of the FKM and ACM. Addition of a third component, a polyacrylic rubber which interacted with the LCP, facilitated the structural development of the LCP phase by acting at the interface. The mechanical properties of the ternary blends were substantially improved because of both the fibril generation and adhesion of rubber particles on the LCP fibrils, which were attributed to the ACM interaction. Morphological investigations suggest that the fine fibrillation of the LCP domains is more apparent in the ternary blends than in the binary blends of FKM and LCP prepared under the same processing conditions. Thermogravimetric analysis (TGA) revealed an improved thermal stability of the FKM in the presence of the LCP for the binary blends, but a lower thermal stability for the ternary blends. Copyright © 2005 Society of Chemical Industry  相似文献   

9.
Miscibility of binary and ternary polymer blends composed of thermotropic liquid crystalline polycarbonate (LCPC), poly(vinyl alcohol) (PVA), and chitosan was investigated by viscosity method, FTIR spectrum, and scanning electron microscope techniques. Effect of addition of chitosan as a compatibilizer on miscibility and morphology of binary LCPC/chitosan and PVA/chitosan and ternary LCPC/PVA/chitosan polymer blends was discussed. These measurements indicated that addition of chitosan into the blends of LCPC with PVA leads to an increase of miscibility and a formation of clear fibril structures on fractured surfaces, which are due to intermolecular hydrogen‐bonding interaction between LCPC, PVA, and chitosan chains. It was suggested that side‐chain hydroxy group of PVA and amino and hydroxy groups of chitosan play an important role in the formation of miscible phase and improvement of morphology in binary and ternary blends composed of LCPC, PVA, and chitosan. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1616–1622, 2004  相似文献   

10.
Thermotropic liquid crystal polymer (TLCP) microfibril‐reinforced poly(ethylene 2,6‐naphthalate) (PEN) composites with various intrinsic viscosities were prepared by a melt compounding method. Polymer composites consisting of bulk cheap polyester with a small amount of expensive TLCP are of interest from a commercial perspective. The TLCP acts as a nucleating agent in the TLCP/PEN composites, enhancing the crystallization of the PEN matrix through heterogeneous nucleation. The structural viscosity index of the TLCP/PEN composites was lower than that of PEN and TLCP, which was attributed to the formation of TLCP fibrillar structures with elongated fibrils in the PEN matrix. The TLCP/PEN composites with higher intrinsic viscosity than the polymer matrix contained these elongated fibrils, and had a TLCP component with a smaller average diameter, and a narrower diameter distribution than TLCP/PEN composites with lower intrinsic viscosity. The higher intrinsic viscosity of the polymer matrix, the higher shear rate and the lower viscosity ratio of TLCP to PEN can all favour TLCP fibrillation in the polymer composites. Copyright © 2006 Society of Chemical Industry  相似文献   

11.
A commercial thermotropic liquid crystalline polymer (LCP), Vectra A950, was injection molded into rectangular sheets of thickness ranging from 1 to 4 mm. By changing the thickness of the mold, the shear rate experienced by the TLCP melt in the mold could be varied. The 1‐mm test sample was highly anisotropic while that with larger thickness (4 mm) was less anisotropic. X‐ray diffraction profile at various depths for each of the test sample corresponded to the degree in the fiber orientation present in the test samples. The anisotropy can be described macroscopically by measuring the tensile strength and modulus in the longitudinal and transverse direction. The ratio between the longitudinal and transverse property decreases proportionally to the thickness of the test sample. This reduction corresponded to the reduction in the shear field as the thickness of the mold was increased. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1713–1718, 2003  相似文献   

12.
Polypropylene (PP) and Vectra A950, a thermotropic liquid crystalline polymer (LCP), blends were prepared in a single‐screw extruder with the variation in Vectra A950 content in presence of fixed amount (2%, with respect to PP and LCP mixture as a whole) of ethylene‐acrylic acid (EAA) copolymer as a compatibilizer. Mechanical analysis of the compatibilized blends within the range of LCP incorporations under study (2–10%) indicated pronounced improvement in the moduli, ultimate tensile strength (UTS), and hardness. Fourier transform infrared (FTIR) spectroscopy studies revealed the presence of strong interaction through H‐bonding between the segments of Vectra A950 and the compatibilizer EAA. Morphological studies performed by scanning electron microscopy (SEM) manifested the development of fine fibrillar morphology in the compatibilized PP/Vectra A950 blends, which had large influence on the mechanical properties. Differential scanning calorimetry studies showed an initial drop of the melting point of PP in the presence of EAA followed by enhancement of the same in presence of Vectra A950. TGA showed an increase in the thermal stability for all blends with respect to matrix polymer PP. Rheological studies showed that a very small quantity of Vectra A 950 was capable of reducing the melt viscosity of PP particularly in the lower shear rate region and hence facilitated processibility of the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Thermotropic side‐chain liquid crystalline polymer (SLCP) and corresponding side‐chain liquid crystalline ionomer (SLCI) containing sulfonate acid were used in the blends of polypropylene (PP) and polybutylene terephthalate (PBT) by melt‐mixing respectively, and thermal behavior, morphological, and mechanical properties of two series of blends were investigated by differential scanning calorimetry, Fourier transforms infrared spectroscopy (FTIR), scanning electron microscopy, and tensile measurement. Compared with the immiscible phase behavior of PP/PBT/SLCP blends, SLCI containing sulfonate acid groups act as a physical compatibilizer along the interface and compatibilize PP/PBT blends. FTIR analyses identify specific intermolecular interaction between sulfonate acid groups and PBT, and then result in stronger interfacial adhesion between these phases and much finer dispersion of minor PBT phase in PP matrix. The mechanical property of the blend containing 4.0 wt % SLCI was better than that of the other blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4712–4719, 2006  相似文献   

14.
Attempts to extend the IPN technology to liquid crystalline polymer (LCP) systems have been made in search for a new approach for enhancing the compatibility of liquid crystalline polymer with engineering thermoplastics. A new type of interpenetrating polymer network based on liquid crystalline polymer : semi‐interpenetrating liquid crystalline polymer network comprising liquid crystalline polymer PET/60PHB (LCP) and crosslinked polystyrene (PS) (for short: semi‐ILCPN LCP/PS) has been successfully prepared. The compatibility and thermal properties of the semi‐ILCPN LCP/PS with different amount of crosslinking agent were investigated by FTIR, SEM, DSC, and TGA, respectively. Furthermore, the possible application of the semi‐ILCPN LCP/PS as a new kind of compatibilizer in PPO/LCP blends was also studied and discussed. Well‐compatibilized PPO/LCP composites with considerably improved mechanical properties were obtained. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1141–1150, 2000  相似文献   

15.
In this work, a virgin Rodrun LC‐5000 liquid crystalline polymer was recycled several times by an injection moulding process. The results showed that there is a significant decrease in the Young's modulus and the tensile strength after the recycling operation, while there is almost no change in the tensile strain. A power law relationship was established between the melt flow rate of the recycled resin and the number of recycling stages. The characteristic three‐layer, skin‐transition‐core structure of the injection moulded specimens was also found to be altered by the number of recycling stages. © 2000 Society of Chemical Industry  相似文献   

16.
A liquid‐crystalline polyester based on hydroxybenzoic acid, hydroquinone, sebacic acid, and suberic acid (named as BQSESU) was melt blended with polycarbonate (PC) at the BQSESU concentration of 2 wt %. It was found that the extent of viscosity reduction induced by the addition of BQSESU depends on the compounding temperature and the relation between them is not monotonic. The lowest viscosity was achieved by blending at 280°C. GPC measurements indicate that molecular weight reduction induced by the compounding is not a major contributor to the viscosity reduction. SEM study shows that when compounded at 280°C the blend is partially miscible with particle size at the submicron level. At the same time a large Tg depression was observed, which indicates strong interactions between the flexible segments of BQSESU and PC in the interfacial regions. The lowest viscosity achieved by blending at 280°C is thus proposed as an interfacial phenomenon. When compounded at 265°C, BQSESU particle size is larger, which gives a small interfacial area and hence less viscosity reduction. When compounded at 300°C a nearly miscible morphology was achieved, which also leads to less viscosity reduction. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3051–3058, 2003  相似文献   

17.
The addition of small amounts of liquid‐crystalline polymers to thermoplastics leads to the formation of in situ–reinforced materials, with improved processability and mechanical properties. Nevertheless, the lack of adhesion between the thermoplastic and the liquid‐crystalline polymer often occurs, thus requiring the use of compatibilizers. In this case, the results of several previous works show that there is an improvement of strength, usually accompanied by a decrease of toughness and, thus, the interest of LCP/TP blends for industrial applications will certainly increase if both strength and toughness are obtained. Additionally, the emphasis of previous studies has been on the evaluation of the properties of the blend under stationary conditions and not under non‐stationary ones, which are, in fact, those most relevant to processing sequences. Thus, the present work focuses on the influence of type of compatibilizer on the mechanical and rheological properties of polypropylene/LCP blends under nonstationary conditions. In terms of mechanical properties, the traditional increase of tensile strength was obtained for all compatibilizers, which was essentially due to the formation, during processing, of thinner and longer fibrils of LCP dispersed in the matrix than those observed for the noncompatibilized blends. Additionally, an improvement of the impact strength and flexural modulus was also observed for the blend in which a compatibilizer with an elastomeric nature was used. Rheologically, the experiments most sensitive to the structure were those performed in transient shear, with an increase of the transient stress (in the form of an overshoot) of different magnitudes being observed for the different compatibilizers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 694–703, 2005  相似文献   

18.
The effect of compatibilizing polycarbonate (PC) and LC5000, a thermotropic liquid crystalline polymer consisting of 80/20% of hydroxybenzoic acid and poly(terephthalate) with a laboratory synthesized compatibilizer was studied. The compatibilizer was synthesized by transesterification of PC and LC5000 with the aid of a catalyst. The effect of compatibilization was investigated by studying the mechanical and morphological properties of injection‐molded plaques with different thicknesses. Substantial improvement was observed in the mechanical properties after compatibilization. Significant enhancement in the fibrillation was also observed in the samples after addition of compatibilizer. The surface finish of the compatibilized samples was smooth and homogenous as compared to the uncompatibilized samples. The skin‐core phenomenon in the tensile fractured surfaces was less obvious in the former samples, indicating better adhesion and homogeneity. These morphological studies showed that the mechanical properties enhancement lay in improved fibrillation and interfacial adhesion between the dispersed and major phases. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 568–575, 2002; DOI 10.1002/app.10308  相似文献   

19.
Bioinspired gradient microstructures provide an attractive template for functional materials with tailored properties. In this study, filaments with gradient microstructures are developed by melt-spinning of immiscible polymer blends. The distribution of the gradient morphology is shown to be controlled by the viscosity ratio of polymers as well as the geometry of the capillary die. Distinct microstructure gradients with long thin fibrils near the surface region and short large droplets near the center region of the filament, as well as the inverse pattern, are formed in systems with different viscosity ratios. The shear flow field in the capillary can elucidate the formation mechanisms of gradient morphologies during processing. The results demonstrate how the features of a gradient microstructure can be tailored by the design of capillary geometry and processing conditions. The viscosity ratio is then introduced as an adjusting tool to control the gradient morphology in a given processing setup. In consequence, this study provides novel design routes for achieving gradient morphologies in immiscible polymers. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48165.  相似文献   

20.
Blends of liquid crystalline poly(oxybenzoate-co-oxynaphthalate) (Vectra A950) and polycarbonate (PC) were prepared by adding a compatibilizer to the two polymers in a melt-blending process. The compatibilizer was based on controlled transesterification between synthesized poly(oxybenzoate-co-terephthalate) (40/60) and PC. The compatibilizer exhibited birefringence, and its thermal property was analyzed by differential scanning calorimetry. The maximum increase in tensile modulus and tensile strength of these compatibilized Vectra blends were 24% and 54%, respectively, as compared with those of binary Vectra blend without compatibilizer resulting from an injection-molding process. The tensile properties of the compatibilized Vectra blends decreased once the concentration of the compatibilizer exceeded 2 phr. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1527–1533, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号