首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a new class of assumed strain finite elements to use in combination with general energy‐momentum‐conserving time‐stepping algorithms so that these conservation properties in time are preserved by the fully discretized system in space and time. The case of interest corresponds to nearly incompressible material responses, in the fully non‐linear finite strain elastic and elastoplastic ranges. The new elements consider the classical scaling of the deformation gradient with an assumed Jacobian (its determinant) defined locally through a weighted averaging procedure at the element level. The key aspect of the newly proposed formulation is the definition of the associated linearized strain operator or B‐bar operator. The developments presented here start by identifying the conditions that this discrete operator must satisfy for the fully discrete system in time and space to inherit exactly the conservation laws of linear and angular momenta, and the conservation/dissipation law of energy for elastic and inelastic problems, respectively. Care is also taken of the preservation of the relative equilibria and the corresponding group motions associated with the momentum conservation laws, and characterized by purely rotational and translational motions superimposed to the equilibrium deformed configuration. With these developments at hand, a new general B‐bar operator is introduced that satisfies these conditions. The new operator not only accounts for the spatial interpolations (e.g. bilinear displacements with piece‐wise constant volume) but also depends on the discrete structure of the equations in time. The aforementioned conservation/dissipation properties of energy and momenta are then proven to hold rigorously for the final numerical schemes, unconditionally of the time step size and the material model (elastic or elastoplastic). Different finite elements are considered in this framework, including quadrilateral and triangular elements for plane problems and brick elements for three‐dimensional problems. Several representative numerical simulations are presented involving, in particular, the use of energy‐dissipating momentum‐conserving time‐stepping schemes recently developed by the author and co‐workers for general finite strain elastoplasticity in order to illustrate the properties of the new finite elements, including these conservation/dissipation properties in time and their locking‐free response in the quasi‐incompressible case. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
In the present paper one‐step implicit integration algorithms for the N‐body problem are developed. The time‐stepping schemes are based on a Petrov–Galerkin finite element method applied to the Hamiltonian formulation of the N‐body problem. The approach furnishes algorithmic energy conservation in a natural way. The proposed time finite element method facilitates a systematic implementation of a family of time‐stepping schemes. A particular algorithm is specified by the associated quadrature rule employed for the evaluation of time integrals. The influence of various standard as well as non‐standard quadrature formulas on algorithmic energy conservation and conservation of angular momentum is examined in detail for linear and quadratic time elements. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
A generalized formulation of the Energy‐Momentum Methodwill be developed within the framework of the Generalized‐α Methodwhich allows at the same time guaranteed conservation or decay of total energy and controllable numerical dissipation of unwanted high frequency response. Furthermore, the latter algorithm will be extended by the consistently integrated constraints of energy and momentum conservation originally derived for the Constraint Energy‐Momentum Algorithm. The goal of this general approach of implicit energy‐conserving and decaying time integration schemes is, to compare these algorithms on the basis of an equivalent notation by the means of an overall algorithmic design and hence to investigate their numerical properties. Numerical stability and controllable numerical dissipation of high frequencies will be studied in application to non‐linear structural dynamics. Among the methods considered will be the Newmark Method, the classical α‐methods, the Energy‐Momentum Methodwith and without numerical dissipation, the Constraint Energy‐Momentum Algorithm and the Constraint Energy Method. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
For the numerical solution of materially non‐linear problems like in computational plasticity or viscoplasticity the finite element discretization in space is usually coupled with point‐wise defined evolution equations characterizing the material behaviour. The interpretation of such systems as differential–algebraic equations (DAE) allows modern‐day integration algorithms from Numerical Mathematics to be efficiently applied. Especially, the application of diagonally implicit Runge–Kutta methods (DIRK) together with a Multilevel‐Newton method preserves the algorithmic structure of current finite element implementations which are based on the principle of virtual displacements and on backward Euler schemes for the local time integration. Moreover, the notion of the consistent tangent operator becomes more obvious in this context. The quadratical order of convergence of the Multilevel‐Newton algorithm is usually validated by numerical studies. However, an analytical proof of this second order convergence has already been given by authors in the field of non‐linear electrical networks. We show that this proof can be applied in the current context based on the DAE interpretation mentioned above. We finally compare the proposed procedure to several well‐known stress algorithms and show that the inclusion of a step‐size control based on local error estimations merely requires a small extra time‐investment. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
6.
In this paper, a framework to construct higher‐order‐accurate time‐step‐integration algorithms based on the post‐integration techniques is presented. The prescribed initial conditions are naturally incorporated in the formulations and can be strongly or weakly enforced. The algorithmic parameters are chosen such that unconditionally A‐stable higher‐order‐accurate time‐step‐integration algorithms with controllable numerical dissipation can be constructed for linear problems. Besides, it is shown that the order of accuracy for non‐linear problems is maintained through the relationship between the present formulation and the Runge–Kutta method. The second‐order differential equations are also considered. Numerical examples are given to illustrate the validity of the present formulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
A new unified theory underlying the theoretical design of linear computational algorithms in the context of time dependent first‐order systems is presented. Providing for the first time new perspectives and fresh ideas, and unlike various formulations existing in the literature, the present unified theory involves the following considerations: (i) it leads to new avenues for designing new computational algorithms to foster the notion of algorithms by design and recovering existing algorithms in the literature, (ii) describes a theory for the evolution of time operators via a unified mathematical framework, and (iii) places into context and explains/contrasts future new developments including existing designs and the various relationships among the different classes of algorithms in the literature such as linear multi‐step methods, sub‐stepping methods, Runge–Kutta type methods, higher‐order time accurate methods, etc. Subsequently, it provides design criteria and guidelines for contrasting and evaluating time dependent computational algorithms. The linear computational algorithms in the context of first‐order systems are classified as distinctly pertaining to Type 1, Type 2, and Type 3 classifications of time discretized operators. Such a distinct classification, provides for the first time, new avenues for designing new computational algorithms not existing in the literature and recovering existing algorithms of arbitrary order of time accuracy including an overall assessment of their stability and other algorithmic attributes. Consequently, it enables the evaluation and provides the relationships of computational algorithms for time dependent problems via a standardized measure based on computational effort and memory usage in terms of the resulting number of equation systems and the corresponding number of system solves. A generalized stability and accuracy limitation barrier theorem underlies the generic designs of computational algorithms with arbitrary order of accuracy and establishes guidelines which cannot be circumvented. In summary, unlike the traditional approaches and classical school of thought customarily employed in the theoretical development of computational algorithms, the unified theory underlying time dependent first‐order systems serves as a viable avenue to foster the notion of algorithms by design. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
In the present paper one‐step implicit integration algorithms for non‐linear elastodynamics are developed. The discretization process rests on Galerkin methods in space and time. In particular, the continuous Galerkin method applied to the Hamiltonian formulation of semidiscrete non‐linear elastodynamics lies at the heart of the time‐stepping schemes. Algorithmic conservation of energy and angular momentum are shown to be closely related to quadrature formulas that are required for the calculation of time integrals. We newly introduce the ‘assumed strain method in time’ which enables the design of energy–momentum conserving schemes and which can be interpreted as temporal counterpart of the well‐established assumed strain method for finite elements in space. The numerical examples deal with quasi‐rigid motion as well as large‐strain motion. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
A novel non‐linearly explicit second‐order accurate L‐stable computational methodology for integrating the non‐linear equations of motion without non‐linear iterations during each time step, and the underlying implementation procedure is described. Emphasis is placed on illustrative non‐linear structural dynamics problems employing both total/updated Lagrangian formulations to handle finite deformation hypoelasticity/hypoelasto‐plasticity models in conjunction with a new explicit exact integration procedure for a particular rate form constitutive equation. Illustrative numerical examples are shown to demonstrate the robustness of the overall developments for non‐linear structural dynamics applications. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Implicit stress integration algorithms have been demonstrated to provide a robust formulation for finite element analyses in computational mechanics, but are difficult and impractical to apply to increasingly complex non‐linear constitutive laws. This paper discusses the performance of fully explicit local and global algorithms with automatic error control used to integrate general non‐linear constitutive laws into a non‐linear finite element computer code. The local explicit stress integration procedure falls under the category of return mapping algorithm with standard operator split and does not require the determination of initial yield or the use of any form of stress adjustment to prevent drift from the yield surface. The global equations are solved using an explicit load stepping with automatic error control algorithm in which the convergence criterion is used to compute automatically the coarse load increment size. The proposed numerical procedure is illustrated here through the implementation of a set of elastoplastic constitutive relations including isotropic and kinematic hardening as well as small strain hysteretic non‐linearity. A series of numerical simulations confirm the robustness, accuracy and efficiency of the algorithms at the local and global level. Published in 2001 by John Wiley & Sons, Ltd.  相似文献   

11.
For the first time, for time discretized operators, we describe and articulate the importance and notion of design spaces and algorithmic measures that not only can provide new avenues for improved algorithms by design, but also can distinguish in general, the quality of computational algorithms for time‐dependent problems; the particular emphasis is on structural dynamics applications for the purpose of illustration and demonstration of the basic concepts (the underlying concepts can be extended to other disciplines as well). For further developments in time discretized operators and/or for evaluating existing methods, from the established measures for computational algorithms, the conclusion that the most effective (in the sense of convergence, namely, the stability and accuracy, and complexity, namely, the algorithmic formulation and algorithmic structure) computational algorithm should appear in a certain algorithmic structure of the design space amongst comparable algorithms is drawn. With this conclusion, and also with the notion of providing new avenues leading to improved algorithms by design, as an illustration, a novel computational algorithm which departs from the traditional paradigm (in the sense of LMS methods with which we are mostly familiar with and widely used in commercial software) is particularly designed into the perspective design space representation of comparable algorithms, and is termed here as the forward displacement non‐linearly explicit L‐stable (FDEL) algorithm which is unconditionally consistent and does not require non‐linear iterations within each time step. From the established measures for comparable algorithms, simply for illustration purposes, the resulting design of the FDEL formulation is then compared with the commonly advocated explicit central difference method and the implicit Newmark average acceleration method (alternately, the same conclusion holds true against controllable numerically dissipative algorithms) which pertain to the class of linear multi‐step (LMS) methods for assessing both linear and non‐linear dynamic cases. The conclusions that the proposed new design of the FDEL algorithm which is a direct consequence of the present notion of design spaces and measures, is the most effective algorithm to‐date to our knowledge in comparison to the class of second‐order accurate algorithms pertaining to LMS methods for routine and general non‐linear dynamic situations is finally drawn through rigorous numerical experiments. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The paper presents aspects of the finite element formulation of momentum and energy conserving algorithms for the non‐linear dynamic analysis of shell‐like structures. The key contribution is a detailed analysis of the implementation of a Simó–Tarnow‐type conservation scheme in a recently developed new mixed finite shell element. This continuum‐based shell element provides a well‐defined interface to strain‐driven constitutive stress updates algorithms. It is based on the classic brick‐type trilinear displacement element and is equipped with specific gradient‐type enhanced strain modes and shell‐typical assumed strain modifications. The excellent performance of the proposed dynamic shell formulation with respect to conservation properties and numerical stability behaviour is demonstrated by means of three representative numerical examples of elastodynamics which exhibit complex free motions of flexible structures undergoing large strains and large rigid‐body motions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
A basic aspect of modern algorithmic formulations for large‐deformation hyperelastic‐based isotropic inelastic material models is the exponential backward‐Euler form of the algorithmic flow rule in the context of the multiplicative decomposition of the deformation gradient. Advantages of this approach in the isotropic context include the exact algorithmic fulfilment of inelastic incompressibility. The purpose of this short work is to show that such an algorithm can be formulated for anisotropic inelastic models as well under assumption of small elastic strain, i.e. for metals. In particular, the current approach works for both phenomenological anisotropy as well as for crystal plasticity. The major difference between the current and previous approaches lies in the fact that the elastic rotation is reduced algorithmically to a dependent internal variable, resulting in a smaller internal variable system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Petrov–Galerkin finite element method is adopted to develop a family of temporal integrators, which preserves the feature of energy conservation or numerical dissipation for non‐linear N‐body dynamical systems. This leads to an enhancement of numerical stability and the integrators may therefore offer some advantage for the numerical solution of stiff systems in long‐term simulations. Dynamically tuneable numerical integration is exploited to improve the accuracy of the time‐stepping schemes. Representative simulations for simple non‐linear systems show the performance of the schemes in controlling over or damping out unresolved high frequencies. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Using a Representative volume element (RVE) to represent the microstructure of periodic composite materials, this paper develops a non‐linear numerical technique to calculate the macroscopic shakedown domains of composites subjected to cyclic loads. The shakedown analysis is performed using homogenization theory and the displacement‐based finite element method. With the aid of homogenization theory, the classical kinematic shakedown theorem is generalized to incorporate the microstructure of composites. Using an associated flow rule, the plastic dissipation power for an ellipsoid yield criterion is expressed in terms of the kinematically admissible velocity. By means of non‐linear mathematical programming techniques, a finite element formulation of kinematic shakedown analysis is then developed leading to a non‐linear mathematical programming problem subject to only a small number of equality constraints. The objective function corresponds to the plastic dissipation power which is to be minimized and an upper bound to the shakedown load of a composite is then obtained. An effective, direct iterative algorithm is proposed to solve the non‐linear programming problem. The effectiveness and efficiency of the proposed numerical method have been validated by several numerical examples. This can serve as a useful numerical tool for developing engineering design methods involving composite materials. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The general deformation problem with material and geometric non‐linearities is typically divided into a number of subproblems including the kinematic, the constitutive, and the contact/friction subproblems. These problems are introduced for algorithmic purposes; however, each of them represents distinct physical aspects of the deformation process. For each of these subproblems, several well‐established mathematical and numerical models based on the finite element method have been proposed for their solution. Recent developments in software engineering and in the field of object‐oriented C++ programming have made it possible to model physical processes and mechanisms more expressively than ever before. In particular, the various subproblems and computational models in a large inelastic deformation analysis can be implemented using appropriate hierarchies of classes that accurately represent their underlying physical, mathematical and/or geometric structures. This paper addresses such issues and demonstrates that an approach to deformation processing using classes, inheritance and virtual functions allows a very fast and robust implementation and testing of various physical processes and computational algorithms. Here, specific ideas are provided for the development of an object‐oriented C++ programming approach to the FEM analysis of large inelastic deformations. It is shown that the maintainability, generality, expandability, and code re‐usability of such FEM codes are highly improved. Finally, the efficiency and accuracy of an object‐oriented programming approach to the analysis of large inelastic deformations are investigated using a number of benchmark metal‐forming examples. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
Discontinuous Galerkin (DG) methods provide a means of weakly enforcing the continuity of the unknown‐field derivatives and have particular appeal in problems involving high‐order derivatives. This feature has previously been successfully exploited (Comput. Methods Appl. Mech. Eng. 2008; 197 :2901–2929) to develop a formulation of linear Kirchhoff–Love shells considering only the membrane and bending responses. In this proposed one‐field method—the displacements are the only unknowns, while the displacement field is continuous, the continuity in the displacement derivative between two elements is weakly enforced by recourse to a DG formulation. It is the purpose of the present paper to extend this formulation to finite deformations and non‐linear elastic behaviors. While the initial linear formulation was relying on the direct linear computation of the effective membrane stress and effective bending couple‐stress from the displacement field at the mid‐surface of the shell, the non‐linear formulation considered implies the evaluation of the general stress tensor across the shell thickness, leading to a reformulation of the internal forces of the shell. Nevertheless, since the interface terms resulting from the discontinuous Galerkin method involve only the resultant couple‐stress at the edges of the shells, the extension to non‐linear deformations is straightforward. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
This work presents a methodology which generates efficient higher‐order methods for linear dynamics by improving the accuracy properties of Nørsett methods towards those of Padé methods. The methodology is based on a simple and low‐cost iterative procedure which is used to implement a set of higher‐order methods with controllable dissipation. A sequence of improved solutions is obtained which correspond to algorithms offering an effective compromise between the efficiency of Nørsett methods and the accuracy of Padé methods. Moreover, a direct control over high‐frequency dissipation is possible by means of an algorithmic parameter. Numerical tests are reported which confirm that this set of algorithms is really attractive for linear dynamic analysis. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with the finite element analysis of a certain class of non‐local dissipative constitutive models, where the canonical pointwise backward‐Euler scheme cannot be employed for satisfying the loading–unloading conditions. In the presence of a non‐local dissipation, the admissibility conditions in a point depend on the inelastic strain increment of the surrounding points and can be cast as a linear complementarity problem (LCP) involving all Gauss points of the process zone. In order to actually solve the LCP, the use of iterative algorithms that can be easily embodied into existing FE codes is discussed. The performance of the proposed algorithms is tested in 1D and 2D examples for both elastoplastic and damaging materials. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号