首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Rheological properties of the film-forming solutions of tapioca starch/decolorized hsian-tsao leaf gum (dHG) as well as the structural properties and viscoelasticity of the resulting films were characterized as a function of dHG and glycerol concentrations. As compared to film-forming solutions with tapioca starch alone, the apparent viscosity, storage modulus and loss modulus of starch/dHG film-forming solutions increased, and tan δ decreased with increasing dHG. After casting of the film-forming solutions, all starch/dHG films showed relatively low opacity values. SEM and X-ray diffraction analysis revealed that all starch/dHG films exhibited homogeneous and highly amorphous structure. The extensional creep compliance of starch/dHG films increased with increasing glycerol concentration, implying weaker mechanical strength and higher mobility of polymer chains by the plasticizing effect of glycerol. However, addition of dHG pronouncedly increased the mechanical and elastic properties of tapioca starch films as evidenced by a decrease in extensional creep compliance and retardation time. Such results implied that dHG may possibly modify the network structure of tapioca starch film.  相似文献   

2.
The effect of galactomananns (guar gum and locust bean gum) at different concentrations (0, 0.2, 0.4, 0.6 and 0.8%, w/w) on the dynamic rheological properties of aqueous rice starch dispersions (5%, w/w) was investigated by small‐deformation oscillatory measurements during aging. Magnitudes of storage (G′) and loss (G′′) moduli measured at 4°C before aging increased with the increase in gum concentration in the range of 0.2–0.8%. G′ and G′′ values of rice starch‐locust bean gum (LBG) mixtures, in general, were higher than those of rice starch‐guar gum mixtures. G′ values of rice starch‐guar gum mixtures as a function of aging time (10 h) at 4°C increased rapidly at initial stage and then reached a plateau region at long aging times. However, G′ values of rice starch‐LBG mixtures increased steadily without showing a plateau region. Increasing the guar gum concentration resulted in an increase in plateau values. The rate constant (K) for structure development during aging was described by first‐order kinetics. K values in rice starch‐guar gum mixtures increased with the increase in guar gum concentration. G′ values of rice starch‐galactomannan mixtures after aging were greater than those before aging.  相似文献   

3.
The physical properties and antimicrobial activities against Listeria monocytogenes of the tapioca starch/decolorized hsian-tsao leaf gum (the polysaccharide gum extracted from hsian-tsao herb followed by removing the color matters, abbreviated as dHG hereafter)-based films incorporated with potassium sorbate (KS) or the ethanolic extract of thyme (TH) were investigated. It was found that the cross-sectional microstructure of starch/dHG films with KS showed some rough texture, and films with TH showed a relatively smooth microstructure with dispersed microparticles. The equilibrium moisture content and water vapor permeability of starch/dHG films with 20 % KS (based on the weight of starch/dHG) was higher than the others tested, possibly due to the plasticizing effect of KS. In general, the tensile strength and tensile modulus decreased with increasing antibacterial concentration. As compared with the KS solutions, the TH solutions showed a pronounced antimicrobial activity against L. monocytogenes as determined by the inhibition zone test. However, the antimicrobial migration of both KS and TH in the starch/dHG matrix was limited to a certain extent, as evidenced by the significantly lower antimicrobial activity in the film system. When applying the starch/dHG films with antimicrobials to the fresh beef slices, all samples showed detectable improvement against the growth of L. monocytogenes, implying that starch/dHG films incorporated with TH or KS were effective against L. monocytogenes in conjunction with some modification of the physical properties due to the interactions between the antimicrobials and the components of film matrix.  相似文献   

4.
The objectives of this research were to examine the mechanical and water vapor barrier properties of the starch/decolorized hsian-tsao leaf gum (dHG) films as a function of dHG and glycerol concentration. Edible film-forming solutions were prepared by mixing tapioca starch with dHG at different starch/dHG ratios to make a total solid content of 2%. In total, 15–40% glycerol was then added based on the dry film matter. Starch/dHG films were obtained by casting. It was found that the puncture strength, tensile strength, and modulus as well as the inverse of relaxation coefficient of starch/dHG films pronouncedly increased with increasing dHG, accompanied with a decreasing tendency in puncture deformation and tensile strain at break. Such results implied that starch interacted with dHG synergistically, resulting in the formation of a new network to improve the mechanical properties of tapioca starch/dHG films. Mechanical strengths of starch/dHG films decreased and water vapor permeability (WVP) at 75% RH increased with increasing glycerol concentration. However, the plasticizing effect of glycerol became less significant at high dHG concentration, particularly for the puncture deformation and tensile strain at break of the films. Water sorption isotherm results indicated that significant water sorption would only occur at high water activity (about 0.75), and generally became more pronounced with increasing glycerol and dHG concentration, but to a lesser extent for the latter. Dynamic mechanical analysis revealed that the major glass transition of starch/dHG films occurred at about −50 °C.  相似文献   

5.
The dynamic rheological properties of blends of rice flour (RF) with six different commercial starches (sweet potato starch, potato starch, tapioca starch, waxy corn starch, hydroxypropylated potato starch, and hydroxypropylated tapioca starch) were evaluated. The magnitudes of storage modulus (G′) of all blend samples were higher than those of loss modulus (G′′) over most of the frequency range (0.63–62.8 rad · s−1). In general, the dynamic moduli results of all blend samples showed that changes in G′ values were relatively greater than changes in G″ values after adding the starches when compared to RF. tan δ (ratio of G′′/G′) values (0.21–0.22) of the RF‐potato starch and RF‐hydroxypropylated potato starch blends were much lower than those (0.25–0.33) of other blends and RF, indicating that there is a more pronounced synergistic effect on the elastic properties of RF‐starch blend systems in the presence of potato starches.  相似文献   

6.
The moisture barrier and physical properties of bilayer films prepared by lamination of starch/decolorized hsian-tsao leaf gum (dHG) and surfactant layers were investigated. It was found that the water vapor permeability (WVP) of tapioca starch/dHG film (1.31 × 10?10 g/m s Pa) pronouncedly decreased by the aid of a surfactant layer lamination (1.36–5.25 × 10?12 g/m s Pa). The WVP of bilayer film increased with increasing the concentration of starch/dHG in the surfactant layer, but was not significantly influenced when it was thickened. The sorption isotherms of both monolayer and bilayer films made from starch/dHG showed typical behavior of water-vapor-sensitive hydrophilic biopolymers. However, the equilibrium moisture content of the monolayer film was significantly higher than that of bilayer films when water activity (aw) reaches 0.33. Both the tensile and puncture force of starch/dHG films did not vary significantly by laminating a surfactant layer, indicating the mechanical strength of surfactant layer is relatively weak, and this surfactant layer mainly served as a barrier for moisture. When compared to emulsion-based starch/dHG films with surfactant, the surfactant laminated starch/dHG films showed higher water barrier property, mechanical strength, and transparency.  相似文献   

7.
The effect of tapioca starch/decolorized hsian-tsao leaf gum (dHG)-based edible coatings with various food additives (including ascorbic acid, calcium chloride, and cinnamon oil) on the qualities and shelf life of fresh-cut “Fuji” apple pieces was investigated during the refrigerated storage. The initial respiration rate, headspace gas composition, color, texture, microbial quality, peroxidase activity, and sensory qualities were analyzed. The results were also compared to those for samples submerged in distilled water and the samples treated with 120-ppm chlorine solution widely used in the industry. It was found that ascorbic acid and cinnamon oil delayed the browning of fresh-cut apples effectively when being applied in the starch/dHG-based edible coating solutions. In combination with calcium chloride, starch/dHG coated fresh-cut apples retained satisfactory firmness. Incorporation of cinnamon oil in starch/dHG coatings significantly reduced the growth of microorganisms, respiration rate, CO2, and ethylene production of fresh-cut apples, but these apple pieces received lower scores in overall preference during sensory evaluation. Among the starch/dHG-based active coatings studied, starch/dHG coatings with ascorbic acid and calcium chloride are suggested for fresh-cut apples, as they could enhance qualities in terms of color and firmness, and prolong the shelf life up to 5–7 days by providing reasonable microbial quality.  相似文献   

8.
Rheological properties of rice starch‐galactomannan mixtures (5%, w/w) at different concentrations (0, 0.2, 0.4, 0.6 and 0.8%, w/w) of guar gum and locust bean gum (LBG) were investigated in steady and dynamic shear. Rice starch‐galactomannan mixtures showed high shear‐thinning flow behaviors with high Casson yield stress. Consistency index (K), apparent viscosity (ηa,100) and yield stress (σoc) increased with the increase in gum concentration. Over the temperature range of 20–65°C, the effect of temperature on apparent viscosity (ηa,100) was described by the Arrhenius equation. The activation energy values (Ea = 4.82–9.48 kJ/mol) of rice starch‐galactomannan mixtures (0.2–0.8% gum concentration) were much lower than that (Ea = 12.8 kJ/mol) of rice starch dispersion with no added gum. Ea values of rice starch‐LBG mixtures were lower in comparison to rice starch‐guar gum mixtures. Storage (G′) and loss (G′′) moduli of rice starch‐galactomannan mixtures increased with the increase in frequency (ω), while complex viscosity (η*) decreased. The magnitudes of G′ and G′′ increased with the increase in gum concentration. Dynamic rheological data of ln (G′, G′′) versus ln frequency (ω) of rice starch‐galactomannan mixtures have positive slopes with G′ greater than G′′ over most of the frequency range, indicating that their dynamic rheological behavior seems to be a weak gel‐like behavior.  相似文献   

9.
The effect of galactomannans (guar gum and locust bean gum) at different concentrations (0, 0.2, 0.4 and 0.6%, w/w) on rheological properties of sweet potato starch (SPS) was studied. The flow behaviors of SPS‐galactomannan mixtures were determined from the rheological parameters of power law and Casson models. The SPS‐galactomannan mixtures had high shear‐thinning fluid characteristics (n = 0.30‐0.36) exhibiting yield stress at 25°C. The presence of galactomannans resulted in the increase in consistency index (K), apparent viscosity (ηa,100) and Casson yield stress (σoc). In the temperature range of 25‐70°C, the mixtures followed the Arrhenius temperature relationship. Dynamic rheological tests at 25°C indicated that the SPS‐galactomannan mixtures had weak gel‐like behavior with storage moduli (G′) higher than loss moduli (G") over most of the frequency range (0.63‐62.8 rad/s) with frequency dependency. The magnitudes of dynamic moduli (G′, G" and η*) of the SPS‐galactomannan mixtures were higher than those of the control (0% gum), and increased with an increase in gum concentration. The tan δ (ratio of G"/G′) values (0.41‐0.46) of SPS‐guar gum mixtures were much lower than those (0.50‐0.63) of SPS‐locust bean gum mixtures, indicating that there was a more pronounced effect of guar gum on the elastic properties of SPS.  相似文献   

10.
The objective of this research is to enhance the water barrier properties of tapioca starch/dHG edible films by incorporating sucrose ester surfactants with different HLB values. The moisture sorption isotherms, mechanical properties, microstructure and optical character of the resulting films were examined as well. It was found that the water barrier property of starch/dHG films is promoted significantly by surfactants, alongside a decreasing tendency in tensile strength and tensile strain at break. Scanning electron micrographs of the starch/dHG/surfactant composite films revealed the folded (multi-layer) microstructure in contrast to the homogeneous matrix of the control films. Starch/dHG/surfactant composite films show low opacity values. With increasing HLB value of the surfactant, the water vapor permeability and tensile strength of starch/dHG/surfactant composite films decrease. Moreover, the water vapor permeability, tensile strength, strain at break, and equilibrium moisture content of starch/dHG/surfactant composite films decrease when the surfactant content is increased, accompanied by an increasing tendency in opacity value. On the other hand, starch/dHG composite film with an emulsion of surfactant and beeswax shows a lower mechanical strength and significantly higher opacity value with less improvement in water vapor permeability.  相似文献   

11.
Biopolymer mixtures impart desirable texture to foods. Dynamic rheology was used to characterize canola protein isolate (CPI)‐guar gum gels. The effects of pH, salt, guar gum and protein concentrations on the gelling ability of CPI were evaluated. Factorial and response surface optimization models were used to identify the optimum conditions (20%, w/v CPI; pH 10; 1.5%, w/v guar gum; 0.05 m NaCl) that would simultaneously maximize G′ (≥28 000 Pa) and minimize tan δ (<0.17) values of CPI‐guar gum gels. Although pH > 8 is unconventional in food systems, strong and elastic CPI‐guar gum gels (G′ =56 440 Pa; tan δ = 0.18) were produced at pH 10, whereas gels prepared at pH 6 were less elastic (G′ = 2726 Pa; tan δ = 0.2). Under the optimum conditions, CPI alone formed a stronger gel (G′ = 64 575 Pa; tan δ = 0.15) than CPI‐guar gum mixture, suggesting that guar gum interfered with protein gelation.  相似文献   

12.
The Rapid Visco-Analyzer (RVA) 20min test was used to study the effects of different levels of konjac flour, guar, gellan, xanthan and locust bean gums on starch cooking properties. Wheat, corn, waxy corn, tapioca and A. hypochondriacus and A. cruentus starches were affected to different degrees by different levels of the gums. Peak viscosity increased at the higher gum concentrations, especially with locust bean gum at the 0.4 g level. The increase in viscosity was more pronounced with wheat and corn starches than with waxy corn and tapioca starches which consist mostly of highly branched amylopectin thus preventing close physical association between molecules. Amaranth starches showed much lower viscosity with all the gums than the other starches. Peak viscosity, time to reach the peak and maximum setback viscosity were affected by the gums. The increase in viscosity of starch/hydrocolloid systems is due to the release of amy-lose and low molecular weight amylopectin which promotes the formation of polymer complexes and significantly adds to the viscosity of the system.  相似文献   

13.
Starches isolated from yam varieties of Dioscorea alata and Dioscorea cayenensisrotundata species were prepared at different time–temperature conditions and characterised by DSC, amperometric iodine titration, light microscopy and rheology and compared to native and chemical modified tapioca starches. The observation by light microscopy showed different morphologies of the granules when heated above 100°C and the tendency for disintegration decreased in the order native tapioca starch > yam starch > modified tapioca starch. Differences between yam and tapioca starches were also revealed by DSC. Yam starch enthalpy is higher than tapioca starch, but the peak temperature is low. However, the significant differences between yam and the other tested starches were found in terms of their rheological behaviour. The viscosity of yam starch was very stable at high temperatures on the viscograph. With this property, yam starch can be used as thickening and gelling agent in food.  相似文献   

14.
This study examined the steady flow and dynamic rheological behaviors of hydroxypropylated sweet potato starch (HPSPS) pastes mixed with guar gum (GG), locust bean gum (LBG), and xanthan gum (XG) at different concentrations (0, 0.3, and 0.6%). The HPSPS–gum mixtures had higher shear‐thinning fluid characteristics than the control (0% gum) at 25°C. The addition of the gums resulted in an increase in the consistency index (K) and apparent viscosity (ηa,100). The dynamic moduli (G′, G″) and complex viscosity (η*) values of the HPSPS–gum mixtures were higher than those of the control, and they increased with an increase in gum concentration. In particular, the presence of XG at 0.6% in the HPSPS–gum mixture systems gave rise to the greatest viscoelastic properties among the gums examined at different concentrations. The tan δ (ratio of G″/G′) values (0.35–0.57) of the HPSPS–GG and HPSPS–XG mixtures were much lower than those of the control (0.82) and HPSPS–LBG (0.88–1.06), indicating that the elastic properties in the HPSPS–gum mixture systems were strongly affected by the additions of GG and XG. These steady flow and dynamic rheological parameters indicated there were synergistic interactions between the HPSPS and gums. The synergistic effects of the gums and modified starch were hypothesized by considering the molecular incompatibility and molecular interactions between the gums and HPSPS.  相似文献   

15.
The Effects of hsian‐tsao leaf gum (HG) on the rheological/textural properties of non‐waxy starches were studied. Pronounced interactions between starch and HG were observed. The rheological properties, including pseudo‐gel viscosity in the rapid visco‐analyser test, storage and loss moduli in the dynamic rheological test, as well as firmness in the texture analyser test, of the mixed gels generally improved with increasing gum concentration to a certain level, then deteriorated with further increase in gum concentration. The critical gum concentration for the development of optimal rheological properties depended on the starch type and concentration. Within the concentration range studied, mixed systems with wheat starch could generally reach the highest pseudo‐gel viscosity, firmness, and storage modulus if the starch/HG ratio was appropriate, followed by those with corn and tapioca starch. Copyright © 2003 Society of Chemical Industry  相似文献   

16.
The effect of Mesona Blumes gum (MBG) was examined on steady and dynamic shear of MBG/rice starch and MBG/wheat starch gels. In addition, stress relaxation and creep tests were performed for two types of cereal starch gels. The flow curves of both MBG/starch gels exhibited pseudoplastic behavior at shear rates between 0.01 and 10 s−1, and the data were fitted into the power law model (R2 = 0.91–0.98). Dynamic mechanical spectrum showed that all gels were strong gels in frequency between 0.1 and 10 Hz. Stress relaxation data at different strains indicated a strain‐softening phenomenon for both gels. Data were fitted into Maxwell model (R2 = 0.91–0.98). Creep curves were conducted at the shear stress 6.4 Pa within linear viscoelastic region of both MBG/starch gels. Data were fitted into Burgers model (R2 = 0.91–0.98). Apparent viscosity η, storage moduli G′, equilibrium stress relaxation modulus Ge and zero apparent viscosity η0 of MBG/rice starch gels decreased in the following order: 6/0>6/0.5>6/0.35>6/0.1 (starch/gum w/w). Whereas η, G′, Ge, and η0 of MBG/wheat starch gels increased gradually along side the increase of MBG contents. The stress relaxation time λ of MBG/rice starch gels increased in the following order: 6/0<6/0.5<6/0.35<6/0.1 (starch/gum w/w) while λ of MBG/wheat starch gels decreased gradually with the increase of MBG level. The influence of MBG on two examined cereal starch is totally opposite.  相似文献   

17.
The rheological properties of batters formulated using different combinations of wheat, corn, and rice flours with two types of hydrocolloids, namely methylcellulose (0.5%, 1% and 1.5%) or xanthan gum (0.2%), were studied. Control samples were formulated with combinations of flours without the added hydrocolloids. The effects of hydrocolloids on rheological characteristics of the batter systems were measured using a controlled stress rheometer at a temperature of 15 °C. The effects of hydrocolloids on dynamic viscoelastic parameters as functions of temperatures were evaluated. All the batters showed shear thinning behaviour with flow behaviour indices in the range 0.34–0.67. Addition of xanthan gum lowered the flow index values, imparting a higher degree of pseudoplasticity to the batter samples compared to methylcellulose. The consistency index of the control batter samples varied from 0.46 to 69.2 Pa sn. Addition of xanthan gum or methylcellulose significantly increased the batter consistency index value. The gums changed the onset temperature of structure development, and the storage (Gmax) and loss moduli (Gmax) of the batter systems. However, no statistically significant effects were observed on the peak temperature of batter systems in which the G′ reached a maximum value. Xanthan gum increased both Gmax and Gmax, whereas at higher concentrations methylcellulose increased Gmax but lowered Gmax. Copyright © 2007 Society of Chemical Industry  相似文献   

18.
The efficiency of sago and tapioca starch stearates for encapsulating lemon oil were studied and compared to the efficiency of gum arabic. The stearates were prepared by esterification of stearic acid with starch. To accomplish esterification, the stearic acid was first coated on the surface of the starch granules. Then the coated granules were heated at 150 °C for 2 h to obtain sago or tapioca starch stearate (SSS or TSS). SSS or TSS can be prepared as ready‐to‐use products in the form of pregelatinized‐hydrolyzed sago or tapioca starch stearate (PGHSSS or PGHTSS). The resulting modified starches were used for encapsulation of lemon oil. The lemon oil encapsulating efficiency for SSS with DS 0.009 and 0.014 were close to that of gum arabic, whereas the encapsulating efficiency for PGHSSS with DS 0.0052 and 0.016 were higher than that of the gum arabic. The TSS and PGHTSS provided encapsulating efficiencies lower than the gum arabic.  相似文献   

19.
Dynamic rheological and thermal properties of acetylated sweet potato starch (SPS) pastes (5%, w/w) were evaluated as a function of the degree of substitution (DS). The transition temperatures (To, Tp and Tc) and enthalpy of gelatinization (ΔH) of acetylated SPS, which were determined using differential scanning calorimetry, were lower than those of native starch, and significantly decreased with an increase in DS. Magnitudes of storage modulus (G′), loss modulus (G′′) and complex viscosity (η*) of acetylated SPS pastes were determined using a small‐deformation oscillatory rheometer. Dynamic moduli (G′, G′′ and η*) values of acetylated SPS pastes except for 0.123 DS were higher than those of native starch, and they also decreased with an increase in DS. The tan δ (ratio of G′′/G′) values (0.37–0.39) of acetylated SPS samples were lower than that (0.44) of native starch and no significant differences were found among acetylated SPS samples, indicating that the elastic properties of SPS pastes were affected by acetylation but did not depend on DS. The G′ values of acetylated SPS during aging at 4°C for 10 h were much lower than those of native starch, showing that the addition of acetyl groups produced a pronounced effect on the retrogradation properties of SPS.  相似文献   

20.
Tapioca starch, carrageenan, oat fibre, pectin, whey protein and a commercial mixture of carrageenan and locust bean gum were assessed for their ability to mimic fat characteristics in cooked low‐fat (10%) beef burgers. Thirteen different blends of the ingredients were formulated in order to examine their effects on quality parameters of low‐fat beef burgers. The beef burgers were tested for cook yield, water‐holding capacity (WHC), retention of shape, sensory and mechanical texture analysis. Most blends significantly (P<0.05) increased both cook yield and WHC, in particular blends containing tapioca starch, oat fibre, whey protein and the carrageenan/locust bean gum mixture. These blends substantially reduced both Warner–Bratzler and Kramer shear values. Sensory analysis showed that beef burgers containing tapioca starch, oat fibre and whey protein were acceptable in terms of flavour and texture. The low‐fat control was found to be the toughest and driest of the beef burgers examined. This study shows that blends of these ingredients can be used to offset the poor quality associated with low‐fat beef burgers. © 1999 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号