首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A methodology for solving three‐dimensional crack problems with geometries that are independent of the mesh is described. The method is based on the extended finite element method, in which the crack discontinuity is introduced as a Heaviside step function via a partition of unity. In addition, branch functions are introduced for all elements containing the crack front. The branch functions include asymptotic near‐tip fields that improve the accuracy of the method. The crack geometry is described by two signed distance functions, which in turn can be defined by nodal values. Consequently, no explicit representation of the crack is needed. Examples for three‐dimensional elastostatic problems are given and compared to analytic and benchmark solutions. The method is readily extendable to inelastic fracture problems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
An algorithm which couples the level set method (LSM) with the extended finite element method (X‐FEM) to model crack growth is described. The level set method is used to represent the crack location, including the location of crack tips. The extended finite element method is used to compute the stress and displacement fields necessary for determining the rate of crack growth. This combined method requires no remeshing as the crack progresses, making the algorithm very efficient. The combination of these methods has a tremendous potential for a wide range of applications. Numerical examples are presented to demonstrate the accuracy of the combined methods. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
A numerical technique for non‐planar three‐dimensional linear elastic crack growth simulations is proposed. This technique couples the extended finite element method (X‐FEM) and the fast marching method (FMM). In crack modeling using X‐FEM, the framework of partition of unity is used to enrich the standard finite element approximation by a discontinuous function and the two‐dimensional asymptotic crack‐tip displacement fields. The initial crack geometry is represented by two level set functions, and subsequently signed distance functions are used to maintain the location of the crack and to compute the enrichment functions that appear in the displacement approximation. Crack modeling is performed without the need to mesh the crack, and crack propagation is simulated without remeshing. Crack growth is conducted using FMM; unlike a level set formulation for interface capturing, no iterations nor any time step restrictions are imposed in the FMM. Planar and non‐planar quasi‐static crack growth simulations are presented to demonstrate the robustness and versatility of the proposed technique. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Level set methods have recently gained much popularity to capture discontinuities, including their possible propagation. Typically, the partial differential equations that arise in level set methods, in particular the Hamilton–Jacobi equation, are solved by finite difference methods. However, finite difference methods are less suited for irregular domains. Moreover, it seems slightly awkward to use finite differences for the capturing of a discontinuity, while in a subsequent stress analysis finite elements are normally used. For this reason, we here present a finite element approach to solving the governing equations of level set methods. After a review of the governing equations, the initialization of the level sets, the discretization on a finite domain, and the stabilization of the resulting finite element method will be discussed. Special attention will be given to the proper treatment of the internal boundary condition, which is achieved by exploiting the partition‐of‐unity property of finite element shape functions. Finally, a quantitative analysis including accuracy analysis is given for a one‐dimensional example and a qualitative example is given for a two‐dimensional case with a curved discontinuity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The aim of the paper is to study the capabilities of the extended finite element method (XFEM) to achieve accurate computations in non‐smooth situations such as crack problems. Although the XFEM method ensures a weaker error than classical finite element methods, the rate of convergence is not improved when the mesh parameter h is going to zero because of the presence of a singularity. The difficulty can be overcome by modifying the enrichment of the finite element basis with the asymptotic crack tip displacement solutions as well as with the Heaviside function. Numerical simulations show that the modified XFEM method achieves an optimal rate of convergence (i.e. like in a standard finite element method for a smooth problem). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Traditional algebraic multigrid (AMG) preconditioners are not well suited for crack problems modeled by extended finite element methods (XFEM). This is mainly because of the unique XFEM formulations, which embed discontinuous fields in the linear system by addition of special degrees of freedom. These degrees of freedom are not properly handled by the AMG coarsening process and lead to slow convergence. In this paper, we proposed a simple domain decomposition approach that retains the AMG advantages on well‐behaved domains by avoiding the coarsening of enriched degrees of freedom. The idea was to employ a multiplicative Schwarz preconditioner where the physical domain was partitioned into “healthy” (or unfractured) and “cracked” subdomains. First, the “healthy” subdomain containing only standard degrees of freedom, was solved approximately by one AMG V‐cycle, followed by concurrent direct solves of “cracked” subdomains. This strategy alleviated the need to redesign special AMG coarsening strategies that can handle XFEM discretizations. Numerical examples on various crack problems clearly illustrated the superior performance of this approach over a brute force AMG preconditioner applied to the linear system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The level set equation is a non‐linear advection equation, and standard finite‐element and finite‐difference strategies typically employ spatial stabilization techniques to suppress spurious oscillations in the numerical solution. We recast the level set equation in a simpler form by assuming that the level set function remains a signed distance to the front/interface being captured. As with the original level set equation, the use of an extensional velocity helps maintain this signed‐distance function. For some interface‐evolution problems, this approach reduces the original level set equation to an ordinary differential equation that is almost trivial to solve. Further, we find that sufficient accuracy is available through a standard Galerkin formulation without any stabilization or discontinuity‐capturing terms. Several numerical experiments are conducted to assess the ability of the proposed assumed‐gradient level set method to capture the correct solution, particularly in the presence of discontinuities in the extensional velocity or level‐set gradient. We examine the convergence properties of the method and its performance in problems where the simplified level set equation takes the form of a Hamilton–Jacobi equation with convex/non‐convex Hamiltonian. Importantly, discretizations based on structured and unstructured finite‐element meshes of bilinear quadrilateral and linear triangular elements are shown to perform equally well. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents the extension of the recently proposed NURBS‐enhanced finite element method (NEFEM) to 3D domains. NEFEM is able to exactly represent the geometry of the computational domain by means of its CAD boundary representation with non‐uniform rational B‐splines (NURBS) surfaces. Specific strategies for interpolation and numerical integration are presented for those elements affected by the NURBS boundary representation. For elements not intersecting the boundary, a standard finite element rationale is used, preserving the efficiency of the classical FEM. In 3D NEFEM special attention must be paid to geometric issues that are easily treated in the 2D implementation. Several numerical examples show the performance and benefits of NEFEM compared with standard isoparametric or cartesian finite elements. NEFEM is a powerful strategy to efficiently treat curved boundaries and it avoids excessive mesh refinement to capture small geometric features. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Two‐dimensional finite ‘crack’ elements for simulation of propagating cracks are developed using the moving least‐square (MLS) approximation. The mapping from the parental domain to the physical element domain is implicitly obtained from MLS approximation, with the shape functions and their derivatives calculated and saved only at the numerical integration points. The MLS‐based variable‐node elements are extended to construct the crack elements, which allow the discontinuity of crack faces and the crack‐tip singularity. The accuracy of the crack elements is checked by calculating the stress intensity factor under mode I loading. The crack elements turn out to be very efficient and accurate for simulating crack propagations, only with the minimal amount of element adjustment and node addition as the crack tip moves. Numerical results and comparison to the results from other works demonstrate the effectiveness and accuracy of the present scheme for the crack elements. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a novel geometric method combined with the piecewise linear function method is introduced into the extended finite element method (XFEM) to determine the crack tip element and crack surface element. Then, by combining with the advanced mesh technique, a novel method is proposed to improve the modelling of crack propagation in triangular 2D structure with the XFEM. The numerical tests show that the accuracy, the convergence, and the stability of the XFEM can be improved using the proposed method. Moreover, the applicability of the conventional multiple enrichment scheme is discussed. Compared with the proposed method, the conventional multiple enrichment scheme has deficiency in mixed mode I and II crack. Finally, a comparative study shows that the performance of the XFEM by using the proposed method to model the crack propagation can be greatly improved.  相似文献   

11.
An approximate level set method for three‐dimensional crack propagation is presented. In this method, the discontinuity surface in each cracked element is defined by element‐local level sets (ELLSs). The local level sets are generated by a fitting procedure that meets the fracture directionality and its continuity with the adjacent element crack surfaces in a least‐square sense. A simple iterative procedure is introduced to improve the consistency of the generated element crack surface with those of the adjacent cracked elements. The discrete discontinuity is treated by the phantom node method which is a simplified version of the extended finite element method (XFEM). The ELLS method and the phantom node technology are combined for the solution of dynamic fracture problems. Numerical examples for three‐dimensional dynamic crack propagation are provided to demonstrate the effectiveness and robustness of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The paper presents a 3D‐based adaptive first‐order shell finite element to be applied to hierarchical modelling and adaptive analysis of complex structures. The main feature of the element is that it is equipped with 3D degrees of freedom, while its mechanical model corresponds to classical first‐order shell theory. Other useful features of the element are its modelling and adaptive capabilities. The element is assigned to hierarchical modelling and hpq‐adaptive analysis of shell parts of complex structures consisting of solid, thick‐ and thin‐shell parts, as well as of transition zones, where h, p and q denote the mesh density parameter and the longitudinal and transverse orders of approximation, respectively. The proposed hp‐adaptive first‐order shell element can be joined with 3D‐based hpq‐adaptive hierarchical shell elements or 3D hpp‐adaptive solid elements by means of the family of 3D‐based hpq/hp‐ or hpp/hp‐adaptive transition elements. The main objective of the first part of our research, presented in this paper, is to provide non‐standard information on the original parts of the element algorithm. In order to do that, we present the definition of shape functions necessary for p‐adaptivity, as well as the procedure for imposing constraints corresponding to the lack of elongation of the straight lines perpendicular to the shell mid‐surface, which is the procedure necessary for q‐adaptivity. The 3D version of constrained approximation presented next is the basis for h‐adaptivity of the element. The second part of our research, devoted to methodology and results of the numerical research on application of the element to various plate and shell problems, are described in the second part of this paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a computational technique based on the extended finite element method (XFEM) and the level set method for the growth of biofilms. The discontinuous‐derivative enrichment of the standard finite element approximation eliminates the need for the finite element mesh to coincide with the biofilm–fluid interface and also permits the introduction of the discontinuity in the normal derivative of the substrate concentration field at the biofilm–fluid interface. The XFEM is coupled with a comprehensive level set update scheme with velocity extensions, which makes updating the biofilm interface fast and accurate without need for remeshing. The kinetics of biofilms are briefly given and the non‐linear strong and weak forms are presented. The non‐linear system of equations is solved using a Newton–Raphson scheme. Example problems including 1D and 2D biofilm growth are presented to illustrate the accuracy and utility of the method. The 1D results we obtain are in excellent agreement with previous 1D results obtained using finite difference methods. Our 2D results that simulate finger formation and finger‐tip splitting in biofilms illustrate the robustness of the present computational technique. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
15.
We present a three‐dimensional vector level set method coupled to a recently developed stable extended finite element method (XFEM). We further investigate a new enrichment approach for XFEM adopting discontinuous linear enrichment functions in place of the asymptotic near‐tip functions. Through the vector level set method, level set values for propagating cracks are obtained via simple geometrical operations, eliminating the need for solution of differential evolution equations. The first XFEM variant ensures optimal convergence rates by means of geometrical enrichment, ie, the use of enriched elements in a fixed volume around the crack front, without giving rise to conditioning problems. The linear enrichment approach, significantly simplifies implementation and reduces the computational cost associated with numerical integration, while providing nonoptimal convergence rates similar to standard finite elements. The 2 dicretization schemes are tested for different benchmark problems, and their combination to the vector level set method is verified for nonplanar crack propagation problems.  相似文献   

16.
This paper presents improvements to three‐dimensional crack propagation simulation capabilities of the generalized finite element method. In particular, it presents new update algorithms suitable for explicit crack surface representations and simulations in which the initial crack surfaces grow significantly in size (one order of magnitude or more). These simulations pose problems in regard to robust crack surface/front representation throughout the propagation analysis. The proposed techniques are appropriate for propagation of highly non‐convex crack fronts and simulations involving significantly different crack front speeds. Furthermore, the algorithms are able to handle computational difficulties arising from the coalescence of non‐planar crack surfaces and their interactions with domain boundaries. An approach based on moving least squares approximations is developed to handle highly non‐convex crack fronts after crack surface coalescence. Several numerical examples are provided, which illustrate the robustness and capabilities of the proposed approaches and some of its potential engineering applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This paper provides a comparison between one particular phase‐field damage model and a thick level set (TLS) damage model for the simulation of brittle and quasi‐brittle fractures. The TLS model is recasted in a variational framework, which allows comparison with the phase‐field model. Using this framework, both the equilibrium equations and the damage evolution laws are guided by the initial choice of the potential energy. The potentials of the phase‐field model and of the TLS model are quite different. TLS potential enforces a priori a bound on damage gradient whereas the phase‐field potential does not. The TLS damage model is defined such that the damage profile fits to the one of the phase‐field model for a beam of infinite length. The model parameters are calibrated to obtain the same surface fracture energy. Numerical results are provided for unidimensional and bidimensional tests for both models. Qualitatively, similar results are observed, although TLS model is observed to be less sensible to boundary conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
An algorithm for transient dynamics of discrete element systems comprising a large number of irregular discrete elements in 3D is presented. The algorithm is a natural extension of contact detection, contact interaction and transient dynamics algorithms developed in recent years in the context of discrete element methods and also the combined finite‐discrete element method. It complements the existing algorithmic procedures enabling transient motion including finite rotations of irregular discrete elements in 3D space to be accurately integrated. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
The extended finite element method (XFEM) enables the representation of cracks in arbitrary locations of a mesh. We introduce here a variant of the XFEM rendering an optimally convergent scheme. Its distinguishing features are as follows: (a) the introduction of singular asymptotic crack tip fields with support on only a small region around the crack tip (the enrichment region), (b) only one and two enrichment functions are added for anti‐plane shear and planar problems, respectively and (c) the relaxation of the continuity between the enrichment region and the rest of the domain, and the adoption of a discontinuous Galerkin (DG) method therein. The method is provably stable for any positive value of a stabilization parameter, and by weakly enforcing the continuity between the two regions it eliminates ‘blending elements’ partly responsible for the suboptimal convergence of some early XFEMs. Moreover, the particular choice of enrichment functions results in a surprisingly sparse stiffness matrix that remains reasonably conditioned as the mesh is refined. More importantly, the stress intensity factors can be extracted with a satisfactory accuracy as primary unknowns. Quadrature strategies required for the optimal convergence are also discussed. Finally, the DG method was modified to retain stability based on an inf‐sup condition. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
This paper is a continuation of Reference [26] (Cecot, Demkowicz and Rachowicz, Computer Methods in Applied Mechanics and Engineering 2000; 188 : 625–643) and describes an implementation of the infinite element for three‐dimensional, time harmonic Maxwell's equations, proposed in Reference [15] (Demkowicz and Pal, Computer Methods in Applied Mechanics and Engineering 1998; 164 : 77–94). The element is compatible with the hp finite element discretizations for Maxwell's equations in bounded domains reported in References [16–18] (Computer Methods in Applied Mechanics and Engineering 1998; 152 : 103–124, 1999; 169 : 331–344, 2000; 187 : 307–337). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号