首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
活性炭活化处理技术的研究进展   总被引:6,自引:2,他引:6  
活性炭在催化、吸附、新能源等领域具有广阔的应用前景.它具有比表面积大、导电和导热性佳、化学稳定性好、价格便宜等特点,受到了人们的广泛关注.在活性炭的制备过程中,活化处理技术是影响其性能的关键.综述了各种活化方法制备活性炭的研究进展,并分析了各种活化方法对活性炭性能的影响.  相似文献   

2.
采用球状活性炭作为硝苯地平药物载体,借助N2吸附仪表征了球状活性炭的比表面积和孔结构,利用SEM表征了球状活性炭的表面形貌,通过考察球状活性炭比表面积、孔隙结构与吸附性能和体外释放性能的关系,研究了球状活性炭对硝苯地平的吸附及缓释行为。结果表明:比表面积大、孔隙结构发达、孔径分布集中在2nm~5nm之间的中孔型活性炭,对硝苯地平的吸附能力较强,吸附量可达19.5mg/g;所制缓释微丸缓释效果良好,在接近人体胃液介质中累计释放率达到19.2%;球状活性炭对硝苯地平的释放动力学符合Higuchi模型,药物基本以恒定速率主动释放。  相似文献   

3.
《新型炭材料》2007,22(3):241-241
超级活性炭的比表面积高达2000m^2/g以上,远高于常规活性炭(一般在300m^2/g~1000m^2/g),又称为高比表面积活性炭,是上世纪80年代后研制的新型活性炭材料,属于高科技产品。超级活性炭除在常规活性炭常用的领域应用外,主要用在常规活性炭无法胜任的其他领域,如能源储存(氢气、天然气和电能的储存)、饮用水的净化、毒气的高效吸附、色谱柱中的填料及催化剂的载体等。  相似文献   

4.
《新型炭材料》2007,22(4):320-320
超级活性炭的比表面积高达2000m^2/g以上,远高于常规活性炭(一般在300m^2/g~1000m^2/g),又称为高比表面积活性炭,是上世纪80年代后研制的新型活性炭材料,属于高科技产品.超级活性炭除在常规活性炭常用的领域应用外,主要用在常规活性炭无法胜任的其他领域,如能源储存(氢气、天然气和电能的储存)、饮用水的净化、毒气的高效吸附、色谱柱中的填料及催化剂的载体等.  相似文献   

5.
活性炭对VOCs的吸附研究进展   总被引:1,自引:0,他引:1  
杨晓娜  任晓玲  严孝清  吴志强  杨贵东 《材料导报》2021,35(17):17111-17124
挥发性有机化合物(VOCs)是大气主要污染物之一,包括烃类化合物和芳香族化合物,如乙二醇和苯等.VOCs不仅导致温室效应,破坏臭氧层,而且当其浓度偏高时,会引起人体不适,严重时危及生命,因此如何有效地处理VOCs成为学术界和工业界的研究热点.目前,处理VOCs的技术众多,包括催化氧化等破坏性回收技术和吸附等可恢复性技术.相比于在回收过程中不可避免会产生有毒副产物的破坏性回收技术,吸附技术具有VOCs回收效率高、操作简单、能量消耗低等优点,因而被广泛应用.吸附技术的核心是吸附剂.活性炭因具有较高的比表面积、良好的孔道结构以及易于表面官能团改性等优点,被认为是一种具有潜力的VOCs吸附材料.但目前未经改性的活性炭通常比表面积小、表面官能团含量少、对VOCs的吸附能力和选择性较差且疏水能力差,极大地影响了其在潮湿环境中的应用.鉴于此,本文在介绍活性炭对VOCs吸附和脱附原理的基础上,从活性炭的物理结构和表面化学性质两个角度出发,重点介绍不同改性方法(物理改性、化学改性等)改性后的活性炭对VOCs吸附能力和选择性的影响,并对吸附饱和后活性炭的再生方法进行总结.本文旨在系统总结活性炭对VOCs的吸附、解吸和再生机理,以及活性炭改性技术的最新进展,为制备比表面积大、表面官能团丰富的工业化活性炭提供参考.  相似文献   

6.
栓皮栎软木具有蜂窝状的多孔细胞结构,碳含量高,是制备生物质活性炭的优质原料。但是现有软木活性炭孔径结构单一、比表面积小,限制了其吸附效果的发挥,构建结构稳定、高比表面积的分级多孔活性炭显得极其重要。本研究以工业废弃的栓皮栎软木粉为原料,探究了预处理温度对软木细胞蜂窝状结构的影响和所制备活性炭的吸附性能,通过调节NaOH用量与活化温度,制备出高比表面积的分级多孔栓皮栎软木活性炭(CACs),并将其用于对亚甲基蓝(MB)染料的吸附。研究结果表明,预处理温度为300℃、碱炭质量比为3∶1、活化温度为800℃是最佳的制备工艺条件,所制备的活性炭具有比表面积大(2 312.85 m2/g)、总孔容大(1.40 cm3/g)、对MB的吸附量大(850.07 mg/g)等特点。本研究显示出分级多孔软木活性炭作为高性能、低成本吸附材料的潜在应用前景。  相似文献   

7.
KOH活化法高比表面积竹质活性炭的制备与表征   总被引:7,自引:0,他引:7  
以竹屑为原料,研究了KOH活化法高比表面积活性炭的制备工艺.分别考察了浸渍比、活化温度、活化时间等工艺参数对产品吸附性能的影响,并提出了可能的活化机理.在所研究的实验条件下,最佳的制备工艺是浸渍比1.0,活化温度800℃,活化时间2h.所得到的活性炭产品的比表面积和孔容可达2996m2/g和1.64cm3/g.该产品附加值高,在吸附领域特别是在双电层电容器的电极材料领域有广阔的应用前景.  相似文献   

8.
活性炭以其丰富的孔道结构和高比表面积而在吸附苯乙烯废气上具有巨大的应用潜力,然而含氧官能团对弱极性苯乙烯的吸附作用机理尚未明晰。本研究通过酸浸渍法制备改性活性炭AC-S和AC-N,探究改性活性炭孔径结构、比表面积和含氧官能团的演变规律及其对苯乙烯吸附性能的影响。结果表明,酸改性可以明显提高活性炭对苯乙烯的吸附量。通过吸附动力学、吸附等温拟合发现,活性炭改性前后均受物理吸附与化学吸附的复合作用影响,改性后活性炭更倾向于单层吸附。HNO3改性活性炭(AC-N)的孔隙结构在苯乙烯有效吸附孔径范围内没有显著改变,表面含氧官能团含量增加提高了AC-N对苯乙烯的吸附性能。表面含氧官能团分析表明,内酯基是提高改性活性炭对苯乙烯吸附量的关键因素。密度泛函理论(DFT)计算表明, AC-N上的内酯基官能团与苯乙烯的乙烯基产生强相互作用,增强了苯乙烯在改性活性炭上的吸附。  相似文献   

9.
活性炭吸附剂的孔结构表征   总被引:5,自引:0,他引:5  
利用低温氮吸附法 ,对 6种不同来源的活性炭吸附剂的孔结构进行了表征。结果表明 :各种不同的活性炭吸附剂均具有较大的比表面积和发达的微孔 ;其中两种活性炭吸附性能更佳 ,作为吸附剂效果较好  相似文献   

10.
活性炭因具有高比表面积和丰富的孔结构而被广泛应用于吸附水处理中的污染物。稻壳具有独特的组成和微观结构, 是制备活性炭的优质碳源。以稻壳为原料, 利用过饱和KOH溶液的预活化和活化双重作用, 在不同温度下制备出超高比表面积活性炭。随着活化温度的升高, 活性炭的比表面积和总孔容逐渐增大。900 ℃下制得的活性炭具有超高比表面积, 达到3600 m2/g, 总孔容为3.164 cm3/g, 明显优于商用活性炭(YP-80, 比表面积为1310 m2/g, 总孔容为0.816 cm3/g)。具有最高比表面积的稻壳活性炭对亚甲基蓝的最大吸附量达到983 mg/g, 几乎是YP-80 (525 mg/g)的两倍。通过吸附动力学拟合, 吸附亚甲基蓝的过程与拟二级动力学模型一致, 表明该过程为化学吸附。  相似文献   

11.
炼油厂石油焦活性炭的制备   总被引:9,自引:4,他引:5  
用炼油厂石油焦为原料,以KOH为活性剂进行活化制备活性炭,考察了活化温度、活化时间以及活化剂用量对BET比表面积和亚甲基蓝吸附的影响,优化出最佳工艺过程:活化温度为800 ℃,活化时间为1 h,活化剂与石油的用量比为5:1。用双柱定容容量法测定了实验制备活性炭对甲烷的吸附量,与常用活性炭比较,是其吸附量的5 倍左右。  相似文献   

12.
预炭化对KOH活化石油焦的结构及电容性能的影响   总被引:3,自引:0,他引:3  
以不同温度炭化的石油焦为原料、KOH为活化剂制备电化学电容器用炭电极材料. 采用XRD、TEM和N2吸附法对前驱体及活化产物的结构进行了表征, 并考察了样品的电化学性能. 结果表明: 通过调整前驱体的预炭化温度, 可实现对石油焦基活性炭的微晶结构和孔结构的调控, 分别制得无晶体特性的高比表面积活性炭和由大量类石墨微晶构成的低比表面积活性炭. 低表面积活性炭依靠充电过程中电解质离子嵌入类石墨微晶层间而实现能量存储, 具有比高比面积活性炭高10倍的面积比电容和更大的体积比电容.  相似文献   

13.
党斐  赵炜  陈曦  刘益伦 《复合材料学报》2017,34(5):1069-1074
为探究表面改性对活性炭孔结构及热电转换性能的影响,使用HNO_3和KOH在不同条件下对活性炭进行表面改性,用N2吸附法和XRD图谱表征活性炭改性前后孔结构和石墨化程度的变化。结果表明,改性后活性炭的比表面积和孔容提高,平均孔径减小,并存在石墨晶体结构。干法改性活性炭的比表面积和总孔容由1 077.880m~2/g和0.763cm~3/g分别增加到1 635.268m~2/g和1.128cm~3/g,并且微孔的孔容增加。改性处理可以去除活性炭中的杂质。分别以改性前后活性炭为材料制备固体电极,KCl为电解液,测试活性炭电极的热电转换性能,发现改性后活性炭具有更高的热电转换性能。  相似文献   

14.
超级电容器用活性炭电极材料的研究进展   总被引:3,自引:3,他引:0  
活性炭因具有制备简单、成本低、比表面积大、导电性好以及化学稳定性高等特点,作为超级电容器电极材料已得到广泛应用.论述了活性炭电极超级电容器的工作原理及活性炭物化性质对超级电容器电化学性能的影响,介绍了活性炭电极材料的最新研究进展,展望了其应用前景,指出寻找新炭源及活化技术、探索活性炭孔结构和表面性质的有效控制手段、开发活性炭复合材料等是该领域今后研究的重点方向.  相似文献   

15.
添加致孔剂制备树脂基活性炭及电容性能研究   总被引:1,自引:0,他引:1  
苏芳  孟庆函  宋怀河 《功能材料》2007,38(1):97-100
以碱性条件下合成的热固性酚醛树脂(PF)为原料,聚乙烯醇缩丁醛(PVB)和聚乙烯二醇(PEG)为致孔剂,采用聚合物共混炭化活化法制备双电层电容器用活性炭材料.通过热重(TG)分析探讨了PF,PF与PVB、PEG的共混物在炭化过程中的热解行为.考察了活化温度和活化时间对所得活性炭的收率、BET比表面积、孔径分布和比电容的影响,并进一步探讨了以这种活性炭材料作电极的双电层电容器的电容性能.结果表明,随着活化温度的升高,活化温度对活性炭收率的影响更为显著,所得活性炭的收率下降.聚合物PEG较PVB更适合作为成孔剂来控制活性炭的中孔孔径分布.酚醛树脂基活性炭电极比电容在850℃活化1 h为79.2F/g,而聚乙烯二醇/酚醛、聚乙烯醇缩丁醛/酚醛混合树脂基活性炭电极比电容则分别高达130.5和145.6F/g.  相似文献   

16.
超级电容器用活性炭的制备与电化学表征   总被引:1,自引:0,他引:1  
以煤焦油沥青为前驱体,采用化学活化法制备了超级电容器用高比表面活性炭和活性炭电极.考察了活化温度对活性炭电极比电容量的影响,研究了活性炭材料的比表面积和孔结构与活性炭电极的充放电性能之间的关系,并对活性碳电极进行了电化学表征.结果表明,在500~700℃,随着活化温度的提高,活性炭电极的比电容量显著增大,当活化温度超过700℃时,活性炭电极材料的比电容量变化不明显.700℃活化温度下所制备的活性炭材料呈现明显的多孔结构,孔容为1.038cm3/g,比表面积为1959m2/g;所制成的活性炭电极比电容量为210F/g,等效内阻为0.9Ω/cm2,10mA/cm2充放电500次后保持90%以上电容量,交流阻抗谱在频率低于转化点时表现出纯粹的电容行为,循环伏安曲线显示出良好的可逆特性.  相似文献   

17.
用比表面积1183m2/g的活性炭和酚醛树脂分别作为吸附剂和粘结剂,考察了成型工艺对活性炭孔结构及其CO2吸附性能的影响。结果表明,活性炭成型后,比表面积有所下降,但对成型活性炭进行CO2二次物理活化可使其比表面积提高60.7%;粘结剂含量为30wt%、成型压力10MPa条件下所制的成型活性炭在800℃用CO2二次活化2h后,其比表面积、压缩强度和对CO2的平衡吸附量分别为1323m2/g、12.7MPa和0.67mmol/g。  相似文献   

18.
煤炭作为一种来源广泛的非金属矿物,是制备大量多孔碳的理想原料。本文以1/3焦煤为原料,NaOH和KOH为活化剂,制备了多孔碳,并研究了硫/多孔碳复合正极材料的电化学性能。结果表明:采用NaOH和KOH单独活化时制备的多孔碳比表面积很大,分别为1 649 m2/g和1 867 m2/g,而采用NaOH和KOH混合活化制备的多孔碳比表面积大幅度下降,当NaOH与KOH质量比为1:1活化时多孔碳的比表面积最小,为290 m2/g。电化学测试表明,NaOH与KOH质量比为1:1混合活化的硫/多孔碳正极材料的电性能优于NaOH和KOH单独活化的硫/多孔碳正极材料,0.2 C下首次放电比容量为790 mA·h/g,库仑效率为93.16%,100次循环后放电比容量为740 mA·h/g。还分析讨论了煤基多孔碳孔径分布对电化学性能的影响。   相似文献   

19.
目的 制备武器装备贮存微环境用单组分的二氧化硫吸附材料。方法 采用双氧水对椰壳活性炭进行表面改性,研究改性活性炭孔隙结构、表面化学性质的变化及其对二氧化硫吸附性能的影响。结果 活性炭存在微孔和中孔,改性后活性炭比表面积略有增加,平均孔径减小。双氧水与活性炭反应起到刻蚀作用,在活性炭表面产生了纳米尺度的网孔结构,降低了活性炭表面碳微晶有序程度,同时双氧水与活性炭反应时起到了氧化作用,提升了活性炭表面氧元素和含氧官能团含量。体积分数为20%的双氧水改性活性炭的吸附容量最高,达到154.15 mg/g,约为改性前的5倍。结论 双氧水对活性炭经表面改性后,产生了纳米尺度的孔隙,并提升了活性炭表面含氧官能团,在两者协同作用下显著提升活性炭对SO2吸附性能,具有良好的装备应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号