首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: The three-dimensional structure of the Escherichia coli methionine repressor (met repressor) is relatively unperturbed by the binding of its corepressor, S-adenosylmethionine (SAM), and of operator DNA. The positively charged corepressor binds to sites on the repressor remote from the DNA-binding site, and despite the lack of induced structural change is able to raise the affinity for operator DNA by a factor of up to 1000. Neutral corepressor analogues also bind to the repressor, but do not increase operator affinity. These observations suggest that the corepressor effect may be electrostatic. RESULTS: Using the program DELPHI, we have calculated electrostatic potentials for the repressor and its complexes, and have obtained results consistent with an electrostatic model for repressor activation. The positive potential originating from the corepressor is propagated through the repressor-operator complex, and is significant at DNA phosphate groups buried in the protein-DNA interface. The rank order of calculated electrostatic interaction energies for complexes with SAM, and two closely-related analogues, is in agreement with experimental measurements of the corresponding repressor-operator affinities. CONCLUSION: Long-range (> 10 A) electrostatic interactions between bound corepressor and operator phosphate groups in the repressor-operator complex may be sufficient to explain repressor activation Met repressor could, therefore, be an electrostatically triggered genetic switch.  相似文献   

2.
Null mutants of Escherichia coli were constructed that cannot synthesize spermidine, because of deletions in the gene encoding S-adenosylmethionine decarboxylase. These mutants are still able to grow at near normal rates in purified media deficient in polyamines. These results in E. coli differ from recent findings that null mutants of Saccharomyces cerevisiae and of Neurospora crassa have an absolute growth requirement for spermidine.  相似文献   

3.
4.
5.
We have studied the importance of the specific DNA sequence of the deo operator site for DeoR repressor binding by introducing symmetrical, single basepair substitutions at all positions in the deo operator and tested the ability of these variants to titrate DeoR in vivo. Our results show that a 16 bp palindromic sequence constitutes the deo operator. Positions outside this palindrome (positions +/- 9, +/- 10) can be changed without any major effect on DeoR binding. Most of the central 6-8 bp of the palindrome (positions +/- 1, +/- 2, +/- 3) can be substituted with other nucleotides with no or only minor effects on DeoR binding, while changes at position +/- 4 and +/- 5 give a more heterogeneous response. Finally, changes at positions +/- 6, +/- 7 and +/- 8 severely disrupt DeoR binding.  相似文献   

6.
To understand the specificity of the Escherichia coli Trp repressor for its operators, we have begun to study complexes of the protein with alternative DNA sequences, using 1H-NMR spectroscopy. We report here the 1H-NMR chemical shifts of a 20-bp oligodeoxynucleotide containing the sequence of a symmetrised form of the trpR operator in the presence and absence of the holorepressor. Deuterated protein was used to assign the spectrum of the oligodeoxynucleotide in a 37-kDa complex with the Trp holorepressor. Many of the resonances of the DNA shift on binding to the protein, which suggests changes in conformation throughout the sequence. The largest changes in shifts for the aromatic protons in the major groove are for A15 and G16, which are thought to hydrogen bond to the protein, possibly via water molecules. We have also examined the effect of DNA binding on the corepressor, tryptophan, in this complex. The indole proton resonance of the tryptophan undergoes a downfield shift of 1.2 ppm upon binding of DNA. This large shift is consistent with hydrogen bonding of the tryptophan to the phosphate backbone of the trpR operator DNA, as in the crystal structure of the holoprotein with the trp operator.  相似文献   

7.
8.
The 9804 gene, which encodes a human Ly-6 protein most similar to mouse differentiation Ag TSA-1/Sca-2, has also been called RIG-E. Like mouse TSA-1, it has a broad tissue distribution with varied expression levels in normal human tissues and tumor cell lines. Like some members of the murine Ly-6 family, the 9804 gene is responsive to IFNs, particularly IFN-alpha. Overlapping genomic fragments spanning the 9804 gene (5543 bp) have been isolated and characterized. The gene organization is analogous to that of known mouse Ly-6 genes. The first exon, 2296 bp upstream from exon II, is entirely untranslated. The three coding exons (II, III, and IV) are separated by short introns of 321 and 131 bp, respectively. Primers were developed for specific amplification of 9804 gene fragments. Screening of human-hamster somatic cell hybrids and yeast artificial chromosomes (YACs) indicated that the gene is distal to c-Myc, located in the q arm of human chromosome 8. No positives were detected from the Centre d'Etude du Polymorphisme Humain mega-YAC A or B panels, nor from bacterial artificial chromosome libraries; two positive cosmids (c101F1 and c157F6) were isolated from a human chromosome 8 cosmid library (LA08NC01). Fluorescence in situ hybridization of metaphase spreads of chromosome 8, containing hybrid cell line 706-B6 clone 17 (CL-17) with cosmid c101F1, placed the 9804 gene close to the telomere at 8q24.3. This mapping is significant, since the region shares a homology with a portion of mouse chromosome 15, which extends into band E where Ly-6 genes reside. Moreover, the gene encoding E48, the homologue of mouse Ly-6 molecule ThB, has also been mapped to 8q24.  相似文献   

9.
10.
We show that axon guidance of embryonic hippocampal neurons is promoted by pathways of a decapeptide (RDIAEIIKDI) derived from a neurite outgrowth domain of the gamma1 chain of laminin-1. This guidance is directly dependent on: (1) a concentration difference of the decapeptide between the peptide pathway and its surrounding areas, and (2) the optimal surface geometry of the decapeptide pathway. These results indicate that axon guidance of central neurons may proceed along a preferred substratum pathway without a concentration gradient of the guiding molecule along this pathway, or without a repulsive molecule next to the axon pathway.  相似文献   

11.
The urea-induced equilibrium unfolding of the Escherichia coli Trp repressor (TR) is a two-state process, involving the native dimeric and unfolded monomeric species. Kinetic studies, however, reveal the presence of transient intermediates that appear only during the folding of the 107-residue protein [Gittelman, M. G., & Matthews, C. R. (1990) Biochemistry 29, 7011-7020]. In order to gain insight into the complex kinetic folding mechanism, the sequence of TR was reduced to the amino-terminal 66 residues, corresponding to the dimerization domain. Two polypeptides, 2-66 and NHis-7-66, were shown to be dimeric at 25 degrees C by size exclusion chromatography and to retain native-like spectroscopic features as evidenced by near- and far-UV circular dichroism and fluorescence spectroscopy. The equilibrium properties of the urea-induced folding of these core fragments were examined by intrinsic tryptophan fluorescence and circular dichroism and found to be well described by a two-state model. At 25 degrees C, the stabilities of both fragments are 14 kcal mol(-1), as compared to the 24 kcal mol(-1) observed for full-length TR. In contrast, the thermal denaturation of [2-66]2 and full-length TR are three-state processes; the midpoint of the transition monitored by absorbance at 292 nm precedes that monitored by circular dichroism at 222 nm. Global analysis of the thermal data as a function of monomer concentration suggests that both the full-length and [2-66]2 TR variants unfold via a dimeric intermediate. Taken together, these results demonstrate that the [2-66]2 fragment constitutes a well-structured, independently folding subdomain of TR that may be useful in elucidating the properties of the transient intermediates observed in the folding of the full-length protein. The dimeric intermediate observed in the thermal denaturation of [2-66]2 suggests that it may be possible to further reduce the core sequence while maintaining the ability to dimerize.  相似文献   

12.
The promoter-operator region of the aroL gene of Escherichia coli K-12 contains three TYR R boxes and one TrpR binding site. Mutational analysis showed that TYR R boxes 1 and 3 are essential for TyrR-mediated regulation of aroL expression, while a fully functional TYR R box 2 does not appear to be essential for regulation. Regulation mediated by the TrpR protein required the TYR R boxes and TrpR site to be functional and was observed in vivo only with a tyrR+ strain. Under conditions favoring the formation of TyrR hexamers, DNase I protection experiments revealed the presence of phased hypersensitive sites, indicative of DNA backbone strain. This suggests that TyrR-mediated repression involves DNA looping. Purified TrpR protein protected the putative TrpR binding site in the presence of tryptophan, and this protection was slightly enhanced in the presence of TyrR protein. This result along with the in vivo findings implies that TyrR and TrpR are able to interact in some way. Inserting 4 bp between TYR R box 1 and the TrpR binding site results in increased tyrosine repression and the abolition of the tryptophan effect. Identification of a potential integration host factor binding site and repression studies of a himA mutant support the notion that integration host factor binding normally exerts a negative effect on tyrosine-mediated repression.  相似文献   

13.
14.
Guanine or hypoxanthine, physiological corepressors of the Escherichia coli purine repressor (PurR), promote formation of the ternary PurR-corepressor-operator DNA complex that functions to repress pur operon gene expression. Structure-based predictions on the importance of Arg190 in determining 6-oxopurine specificity and corepressor binding affinity were tested by mutagenesis, analysis of in vivo function, and in vitro corepressor binding measurements. Replacements of Arg190 with Ala or Gln resulted in functional repressors in which binding of guanine and hypoxanthine was retained but specificity was relaxed to permit binding of adenine. X-ray structures were determined for ternary complexes of mutant repressors with purines (adenine, guanine, hypoxanthine, and 6-methylpurine) and operator DNA. These structures indicate that R190A binds guanine, hypoxanthine, and adenine with nearly equal, albeit reduced, affinity in large part because of a newly made compensatory hydrogen bond between the rotated hydroxyl side chain of Ser124 and the exocyclic 6 positions of the purines. Through direct and water-mediated contacts, the R190Q protein binds adenine with a nearly 75-fold higher affinity than the wild type repressor while maintaining wild type affinity for guanine and hypoxanthine. The results establish at the atomic level the basis for the critical role of Arg190 in the recognition of the exocyclic 6 position of its purine corepressors and the successful redesign of corepressor specificity.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号