首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the important energy saving tools used in solid oxide fuel cell (SOFC) system is the anode off-gas recycling (AGR) via an ejector which allows the recirculation of the unused fuels in the anode exhaust gas including hot steam which is essential for the elimination of the carbon deposition and the initiation of the reactions in the reformer. In an ejector system developed for the SOFCs, the steam to carbon ratio (STCR) and entrainment ratio are the crucial parameters for the determination of the ejector performance. These parameters can be engineered by modifying the geometric dimensions and operation conditions. This study focuses on the determination of the maximum STCR value and entrainment ratio via numerical geometric analyses for a micro combined heat and power (μ-CHP) system based on 4 kW SOFC, utilizing methane. A detailed numerical procedure for designing an ejector is provided and the ejector performance is investigated for different critical dimensions (throat diameter, nozzle exit angle and nozzle position etc.). The results show that the nozzle position and the nozzle exit angle significantly affect STCR and the entrainment ratio. When the nozzle position increases and nozzle exit angle decreases, the entrainment ratio and STCR is found to increase. The entrainment ratio and STCR are determined as around 7.3 and 2.7, respectively for a specific design created in the study.  相似文献   

2.
Improvement of fuel utilization is an important issue for proton exchange membrane fuel cell (PEMFC) system. As a promising anode recirculation method, ejector has attracted great attention because it does not require additional power consumption. However, some transient processes such as the suck, diffusion, and mix of fluids are still not thoroughly revealed, which significantly influence ejector performances. In this study, a dynamic three-dimensional (3D) multicomponent ejector model for a 130-kW PEMFC system is developed. The model is validated against experimental data, including the entrainment ratio and mass flow rates. The effects of operating conditions (eg, pressure, water vapor, and nitrogen mass fraction) are investigated. The results show that the fuel supply can be controlled by the primary flow pressure. When the pressure difference between the primary and secondary flow is less than 10 kPa, the secondary flow cannot be sucked into the ejector. The transient response of ejector during stack power variations can be classified into two periods: the primary flow impact period and the mixed flow impact period. Under normal fuel cell system operating conditions, when the inlet relative humidity of the secondary flow is higher than 85%, the water vapor condensation is possible to happen at the ejector outlet region, leading to fuel supply instability. Besides, the hydrogen entrainment ratio decreases with the increase of nitrogen mass fraction. The effects of geometric parameters (eg, nozzle convergence angle, secondary flow tube diameter, mixing tube length, and diffuser angle) on ejector performances are also studied. It is found that the relatively short tube leads to pressure fluctuations in the vacuum region. Increasing the tube length is beneficial to creating a stable vacuum region. However, excessive tube length can increase the friction loss. Increasing the secondary flow inlet tube diameter is beneficial to the entrainment ratio. However, further enlarging the diameter contributes negligibly to the increase of entrainment ratio once the secondary flow mass rate depends on pressure.  相似文献   

3.
The performance of hydrogen ejectors can be affected by the working conditions of the fuel cell system especially associating with the working pressure and pressure drop of the anode. However, the pressure drop characteristics model of the anode is correlated to the fuel cell parameters. In this work, a porous jump boundary is used as a pressure drop characteristics model of the anode which is weakly relevant to the parameters of fuel cells by employing the pressure drop characteristic curve of fuel cells. Based on the model, the influence of the condition parameters on the property of the ejector can be predicted. According to our results, the entrainment performance of the ejector can be influenced by anode inlet temperature, relative humidity, and differential pressure. Also, it is helpful for the design and prediction of the ejector in different fuel cell systems depend on the pressure drop.  相似文献   

4.
The present paper applies the thermodynamic analysis with the determining the efficiency of a combined cycle power plant with a chemically recuperated gas turbine. Thermochemical recuperation of exhaust heat after a gas turbine is realized via the steam methane reforming process. The main concept of combined cycle power plant (CCPP) with chemically recuperated gas turbine (CRGT) is based on the use of exhaust heat for endothermic reforming of the original hydrocarbon fuel in a reformer and for steam generation for a steam cycle. To understand the effect of operating variables such as temperature, pressure, and steam-to-methane ratio on the overall efficiency, the energy and mass balances were compiled. The energy flows were represented by a Sankey diagram. The results of the thermodynamic analysis show that efficiency of CCPP with CRGT is significantly higher (4–7%) than efficiency of CCPP with a conventional gas turbine without TCR. Maximum efficiency of CCPP with CRGT of 0.6412 is observed at inlet temperature of working gas of 1600 °C, pressure of 23 bar for a steam-to-methane ratio of 3.0. In the temperature of inlet working gas below 1200 °C the increase in the efficiency of CCPP with TCR is less than 2%.  相似文献   

5.
Simulations are performed to examine the performance of a vacuum ejector in the hydrogen recovery loop of a 10-kW PEMFC system. The simulations commence by examining the effects of the primary flow fluid pressure and secondary flow temperature on the recirculation ratio and hydrogen stoichiometric ratio. Further simulations are then performed to investigate the temperature, pressure, velocity and Mach number distributions within the ejector for various values of the primary flow inlet pressure and temperature. A prototype ejector is fabricated using a 3D printing technique. Experiments are performed to evaluate the gas tightness and gas recovery performance of the ejector under realistic operating conditions. The simulation results show that the recirculation ratio and hydrogen stoichiometric ratio increase with a decreasing primary flow inlet pressure and secondary flow inlet temperature. As the primary flow inlet pressure increases, the pressure, velocity, and Mach number in the mixing chamber increase, and the hydrogen recovery performance decreases. Furthermore, as the temperature of the primary fluid flow increases, the stability of the isentropic flow condition within the ejector is enhanced. The experimental results show that the prototype vacuum ejector has a maximum gas leakage of just 0.7 psi and a minimum hydrogen recirculation rate of 59.3%. Consequently, it has significant potential for passive hydrogen recovery in large-scale fuel cell systems.  相似文献   

6.
Anodic fuel recirculation system has a significant role on the parasitic power of proton exchange membrane fuel cell (PEMFC). In this paper, different fuel supply systems for a PEMFC including a mechanical compressor, an ejector and an electrochemical pump are evaluated. Furthermore, the performances of ejector and electrochemical pump are studied at different operating conditions including operating temperature of 333 K–353 K, operating pressure of 2 bar–4 bar, relative humidity of 20%–100%, stack cells number from 150 to 400 and PEMFC active area of 0.03 m2–0.1 m2. The results reveal that higher temperature of PEMFC leads to lower power consumption of the electrochemical pump, because activation over-potential of electrochemical pump decreases at higher temperatures. Moreover, higher operating temperature and pressure of PEMFC leads to higher stoichiometric ratio and hydrogen recirculation ratio because the motive flow energy in ejector enhances. In addition, the recirculation ratio and hydrogen stoichiometric ratio increase, almost linearly, with increase of anodic relative humidity. Utilization of mechanical compressor leads to lower system efficiency than other fuel recirculating devices due to more power consumption. Utilization of electrochemical pump in anodic recirculation system is a promising alternative to ejector due to lower noise level, better controllability and wide range of operating conditions.  相似文献   

7.
Fast exhausting fossil fuel reserves and high rise in the air pollution levels due to combustion of these fuels bound us to discover some cleaner and environment-friendly fuels for the engines. Biodiesel from edible and non-edible seed oils has been identified as a better alternate of the diesel fuel in engines with a little sacrifice in terms of power output but with an improvement in exhaust emissions. The aim of the present research work is to optimize the input parameters of diesel engine running on Polanga biodiesel to improve performance and exhaust emissions. The input parameters selected for optimization are fuel injection timing, fuel injection pressure, Polanga biodiesel blend, and engine load with respect to brake thermal efficiency, brake specific fuel consumption, hydrocarbon emission, smoke opacity, and emission of nitrogen oxides. Relative weights of the response variables were calculated by standard deviation. The optimum combination of input parameters was obtained by Taguchi-based Multi-Objective Optimization by Ratio Analysis. Experiments were performed according to Taguchi’s L16 orthogonal array in a random manner in which three replicates of each experiment were noted. The optimum combination of input parameters for maximum performance and minimum exhaust emissions found to be as fuel injection timing 27° bTDC, fuel injection pressure –? 220 bar, biodiesel blend –? B40, and engine load –? 60%. The optimum values of the response variables, at the obtained optimum combination of input parameters, were predicted by Taguchi method and then verified experimentally and a good relation was found between them. These optimum values found to be as brake thermal efficiency –? 36.351%, brake specific fuel consumption –? 0.322 kg/kW-h, hydrocarbon emission –? 2.193 ppm, smoke opacity –? 80.925 HSU, and NOx emission –? 690.987 ppmv.  相似文献   

8.
The working fluid of the hydrogen recirculation ejector in proton exchange membrane fuel cell (PEMFC) systems is humid hydrogen containing water vapour. However, previous studies on the hydrogen recirculation ejector using computational fluid dynamics (CFD) were based on the single-phase flow model without considering the phase change of water vapour. In this study, the characteristics of the phase change and its effect on the ejector performance are analysed according to a two-phase CFD model. The model is established based on a non-equilibrium condensation phase change. The results show that the average deviation of the entrainment ratio predicted by a single-phase flow model is 25.8% compared with experiments involving a hydrogen recirculation ejector, which is higher than the 15.1% predicted by the two-phase flow model. It can be determined that droplet nucleation occurs at the junction of the primary and secondary flow, with the maximum nucleation rate reaching 4.0 × 1020 m?3s?1 at a primary flow pressure of 5.0 bar. The higher temperature, lower velocity, and higher pressure of the gas phase can be found in the mixing region due to condensation, resulting in a lower entrainment performance. The nucleation rate, droplet number, and liquid mass fraction increase remarkably with an increasing primary flow pressure. This study provides a meaningful reference for understanding phase change characteristics and two-phase flow behaviour in hydrogen recirculation ejectors for PEMFC systems.  相似文献   

9.
An ejector primary gas flow control solution based on three solenoid valves is designed, implemented and tested in a 5 kW proton exchange membrane fuel cell (PEMFC) system with ejector-based anode gas recirculation. The robust and cost effective combination of the tested flow control method and a single ejector is shown to achieve adequate anode gas recirculation rate on a wide PEMFC load range.In addition, the effect of anode gas inert content on ejector performance in the 5 kW PEMFC system is studied at varying load and anode pressure levels. Results show that increasing the inert content increases recirculated anode gas mass flow rate but decreases both the molar flow rate and the anode inlet humidity.Finally, the PEMFC power ramp-rate limitations are studied using two fuel supply strategies: 1) advancing fuel supply and venting out extra fuel and 2) not advancing fuel supply but instead using a large anode volume. Results indicate that the power of the present PEMFC system can be ramped from 1 kW to 4.2 kW within few hundred milliseconds using either of these strategies.  相似文献   

10.
In this paper, a theoretical model for the performance monitoring and fault detection of fuel ejectors in the hybrid solid oxide fuel cell (SOFC) system is proposed. The procedures of using the model to analyze ejector properties such as the primary mass flow rate, the secondary mass flow rate, the recirculation ratio and steam to carbon ratio (STCR) are introduced. Based on the model, the anode gas recirculation performances of a hybrid SOFC system are studied under various operating conditions. Results show that the model can be used to evaluate the performance of ejector not only in the critical mode but also in the subcritical and back flow modes, which is especially useful at SOFC off-design operating conditions such as start up, load changes and shut down.  相似文献   

11.
An anode gas recycle (AGR) system driven by a variable flow rate ejector was developed for use in small-scale solid oxide fuel cell (SOFC) systems. The partial load conditions were simulated through recycling power generation experiments to clarify the fundamental characteristics of the variable flow ejector by using actual 1 kW-class SOFC equipment at the steady state. We achieved power generation in a range of recirculation ratios under partial load conditions of 62.5%–80% by controlling the recirculation characteristics with the developed ejector by using a needle. Results showed that the recirculation ratio can be controlled in the range of 0.595–0.694 by adjusting the driving energy with the ejector even at a partial load where the fuel gas flow rate of the ejector changes. Furthermore, the effect of the recirculation ratio on SOFC output was discussed based on the results of gas analyses and temperature measurements. As the recirculation ratio increased, the fuel concentration at the SOFC inlet decreased and the water vapor concentration increased. However, the effect of the recirculation ratio on the stack temperature and output power was proposed to be small. In addition, it was confirmed that the operation was performed under safe conditions where no carbon deposition occurred by circulating the steam generated inside the SOFC without an external water supply. Ejector characteristics during power generation experiments were lower than those at room temperature, which indicates that an ejector upstream pressure of approximately 20–170 kPa gauge pressure was required. Variations in the fluid properties of the driver gas in the ejector motive nozzle heated by the hot suction gas were found to degrade the performance of the ejector installed in the SOFC system, as compared with the results of simulation experiments at room temperature. Nevertheless, the recirculation ratio range required for operation could be satisfied by adjusting the flow velocity of the driving gas through needle control.  相似文献   

12.
In this paper, a new configuration of ejector‐expansion transcritical CO2 (TRCC) refrigeration cycle is presented, which uses an internal heat exchanger and intercooler to enhance the performance of the new cycle. The theoretical analysis on the performance characteristics was carried out for the new cycle based on the first and second laws of thermodynamics. It was found that, compared with the conventional transcritical CO2 cycle and ejector‐expansion transcritical CO2 cycle, the simulation results show that the coefficient of performance and second law efficiency of the new cycle were increased by about 55.5 and 26%, respectively, under the operating conditions that evaporator temperature is 10°C, gas cooler outlet temperature is 40°C and gas cooler pressure is optimum pressure. It is also concluded that the entrainment ratio for the new ejector‐expansion TRCC cycle is on average 35% higher than that of the conventional ejector‐expansion TRCC cycle. The analysis results are of significance to provide theoretical basis for design optimization of the transcritical CO2 refrigeration cycle with an ejector‐expansion device, internal heat exchanger and intercooler. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Optimization studies along with optimum parameter correlations, using constant area mixing model are presented in this article for ejector-expansion transcritical CO2 heat pump cycle with both conventional and modified layouts. Both the energetic and exergetic comparisons between valve, turbine and ejector-expansions-based transcritical CO2 heat pump cycles are also studied for simultaneous cooling and heating applications. Performances for conventional layouts are presented by maximum COP, optimum discharge pressure and corresponding entrainment ratio and pressure lift ratio of ejector, whereas for modified layout by maximum COP, optimum discharge pressure and corresponding pressure lift ratio. The optimization for modified layout can be realized for certain entrainment ratio, evaporator and gas cooler exit temperature combinations. Considering the trade-off between the system energetic and exergetic performances, and cost associated with expansion devices, the ejector may be the promising alternative expansion device for transcritical CO2 heat pump cycle.  相似文献   

14.
This work presents an experimental study describing a six-cylinder spark ignition engine running with a lean equivalence ratio, high compression ratio, ignition delay and used in a cogeneration system (heat and electricity production). Three types of fuels; natural gas, pure methane and methane/hydrogen blend (85% CH4 and 15% H2 by volume), were used for comparison purposes. Each fuel has been investigated at 1500 rpm and for various engine loads fixed by electrical power output conditions. CO, CO2, HC, and NOx emissions values, and exhaust gas temperature were measured. The effect of fuel composition on engine characteristics has been studied. The results show, that the hydrogen addition increased HC emissions (around 18%), as well as performance, whilst it reduced NOx (around 31%), exhaust gas temperature, CO and CO2.  相似文献   

15.
The integration of an aqua‐ammonia inlet air‐cooling scheme to a cooled gas turbine‐based combined cycle has been analyzed. The heat energy of the exhaust gas prior to the exit of the heat recovery steam generator has been chosen to power the inlet air‐cooling system. Dual pressure reheat heat recovery steam generator is chosen as the combined cycle configuration. Air film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor–pressure ratio, compressor inlet temperature, turbine inlet temperature, ambient relative humidity, and ambient temperature on performance parameters of plants has been carried out. It has been observed that vapor absorption inlet air cooling improves the efficiency of gas turbine by upto 7.48% and specific work by more than 18%, respectively. However, on the adoption of this scheme for combined cycles, the plant efficiency has been observed to be adversely affected, although the addition of absorption inlet air cooling results in an increase in plant output by more than 7%. The optimum value of compressor inlet temperature for maximum specific work output has been observed to be 25 °C for the chosen set of conditions. Further reduction of compressor inlet temperature below this optimum value has been observed to adversely affect plant efficiency. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
选取了高、中、低负荷的3个典型工况,研究了进气节流及喷油策略对柴油机缸内燃烧过程、排放性、经济性及柴油机催化氧化器(diesel oxidation catalyst,DOC)入口温度的影响,得到全工况区域的DOC入口温度的升温策略。试验结果表明:随进气节流阀开度减小,进气流量降低,压缩压力下降,燃烧始点滞后,最高燃烧压力下降,循环指示功降低;HC排放得到抑制,其他排放恶化;DOC入口温度得到有效提升,负荷越小,温升效果越显著。喷油规律耦合进气节流发现,主喷提前角的推迟使得滞燃期缩短、后燃加重,DOC入口温度小幅度提升;近后喷油量增加可提高DOC入口温度,推迟近后喷,DOC入口温度先增大后降低,存在最佳的近后喷时刻。依据样机全工况排温分布特征,提出了不同工况区域DOC入口温度升温控制策略。  相似文献   

17.
A thermodynamic analysis of synthesis gas production via partial oxidation (POX) of biogas is performed in the present article. Chemical equilibrium calculations are conducted for partial oxidation of (CH4+CO2) mixtures based on Gibbs free energy minimization method emphasizing soot formation. Regarding precise evaluation of carbon dioxide effects on the reforming characteristics, the obtained results are compared with the experimental data. Furthermore, the effects of steam injection at the inlet of the reformer on the coking behavior and syngas production yield are studied. To investigate the effects of the equivalence ratio (?), temperature and pressure, a broad parametric study is performed. The results reveal that the process temperature plays a pivotal role in enhancing the syngas production and soot abatement. It is also found that the pressure has an impractical effect on the syngas production yield, leading to the soot formation and decrease in both hydrogen and carbon monoxide yields. Furthermore, increasing the inlet CO2/CH4 makes the thermal reforming efficiency to rise at an equivalence ratio lower than 3. Meanwhile, increasing the steam to methane (S/C) ratio reduces carbon formation and enhances hydrogen production. Nonetheless, when the S/C ratio is larger than 2 at ? = 2.5 and 1 at ? = 3, the enhancement of hydrogen generation is minimized and even tends to become impractical. Therefore, near adiabatic and atmospheric condition at ? = 2.5–3 with S/C < 1 are recommended as the optimum operating routes for partial oxidation of biogas.  相似文献   

18.
The purpose of this work is to suggest a steam-to-carbon ratio (SCR) control strategy for the start-up and operation of a fuel processor and to experimentally verify this strategy. To overcome ambient temperature variability and manufacturing deviations, a controlled SCR method (CSM) is suggested. The CSM controls the water flow rate independently through heat exchangers (HEXs) to maintain a constant inlet temperature of the reactors. To consistently satisfy the target SCR value, the remaining water after control is fed to the last HEX used as a buffer. To verify the CSM, seven gasoline fuel processors (GFPs) were constructed. The GFPs consisted of an autothermal reformer (ATR), hydrodesulphurization (HDS), a high-temperature shift reactor (HTS), a medium-temperature shift reactor (MTS), a preferential oxidation reactor (PROX), a HEX, and an exhaust gas burner. Water was individually supplied to HEX #1 ~ HEX #4 as a cool-side fluid. One of the GFPs was operated at a low (?32 °C) and a high (50 °C) temperature. The CSM maintained a constant inlet temperature of the reactors; only the inlet temperature of the PROX was affected by the ambient temperature thanks to the CSM. Temperature results for the other six GFPs showed that manufacturing deviations appeared only in the inlet temperature of the PROX by the CSM. To confirm the effect of the CSM on durability, 38 start–stop cycles were performed over 314 h of operation. The results showed that the repeated use of the CSM led to a slow degradation of efficiency, while the temperatures of the reformer and reactor remained steady during cycling testing.  相似文献   

19.
Understanding of the chemical kinetics and heat transfer mechanism within micro-combustors is essential for the development of stable-combustion technology. Computational Fluid Dynamics (CFD) based numerical simulation has been proven to be an effective approach to analyze the performance of combustion under various conditions. The objective of this paper is to study hydrogen-assisted catalytic combustion of methane. It is proved that methane conversion rate decreases as the inlet velocity increases. The most suitable inlet velocity was 0.2 m/s, while the inlet temperature was 900 K. The ignition temperature will decrease considerably when hydrogen content of the fuel was increased with a fixed value of equivalent ratio, meanwhile, the moment of the ignition temperature advances and methane conversion rate also rises accordingly. This is useful for optimization micro combustion fuel.  相似文献   

20.
Increasing production and recovery from the mature oil and gas fields often requires a boosting system when the gas pressure is lower than that demanded by the transportation or process system. The supersonic ejector, considered to be a cost-effective way to boost the production of a low-pressure gas well, was introduced into the industrial field. However, the exploitation of natural gas often accompanies with water. The computational fluid dynamics (CFD) technique was employed to investigate the two-phase effect (water droplets) on the performance of natural gas ejector for the motive pressure ranging from 11.0 MPa to 13.0 MPa, induced pressure from 3.0 MPa to 5.0 MPa, and backpressure from 5.1 MPa to 5.6 MPa, while the injected water flow rate was less than 0.03 kg s?1. The numerical results show that the entrainment ratio of the two-phase operation was higher than that of the single-phase operation with the variation of backpressure. Meanwhile, the entrainment ratio increased with the increase of injected water flow rate into the primary flow. When the water was injected into the secondary flow, the entrainment ratio decreased as the injected water flow rate increased, but the critical backpressure remained unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号