首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Basin-scale assessment of fish habitat in Great Lakes coastal ecosystems would increase our ability to prioritize fish habitat management and restoration actions. As a first step in this direction, we identified key habitat factors associated with highest probability of occurrence for several societally and ecologically important coastal fish species as well as community metrics, using data from the Great Lakes Aquatic Habitat Framework (GLAHF), Great Lakes Environmental Indicators (GLEI) and Coastal Wetland Monitoring Program (CWMP). Secondly, we assessed whether species-specific habitat was threatened by watershed-level anthropogenic stressors. In the southern Great Lakes, key habitat factors for determining presence/absence of several species of coastal fish were chlorophyll concentrations, turbidity, and wave height, whereas in the northern ecoprovince temperature was the major habitat driver for most of the species modeled. Habitat factors best explaining fish richness and diversity were bottom slope and chlorophyll a. These models could likely be further improved with addition of high-resolution submerged macrophyte complexity data which are currently unavailable at the basin-wide scale. Proportion of invasive species was correlated primarily with increasing maximum observed inorganic turbidity and chlorophyll a. We also demonstrate that preferred habitat for several coastal species and high-diversity areas overlap with areas of high watershed stress. Great Lakes coastal wetland fish are a large contributor to ecosystem services as well as commercial and recreational fishery harvest, and scalable basin-wide habitat models developed in this study may be useful for informing management actions targeting specific species or overall coastal fish biodiversity.  相似文献   

2.
The Great Lakes Basin (GLB) holds vast reserves of groundwater, the great majority of which eventually drains to the lakes. Urban growth significantly affects both the quality and quantity of this groundwater and thereby represents a potential threat to the long-term viability of the Great Lakes hydrologic system. Urban areas import, manufacture, store, transport, and utilise large volumes of chemicals, a proportion of which inevitably finds its way to the shallow sub-surface. In many cases, potentially polluting chemicals are applied directly to urban surfaces (e.g. as road salts, fertilizers and pesticides), are stored in the subsurface (e.g. gasoline tanks) or are released to the subsurface (e.g. septic systems). Because most of the basin's larger urban areas rely almost exclusively on lake-based supplies, very little attention is given to the accumulation of contaminants in shallow urban groundwaters and the serious risks they pose. Assessment of the problem is complicated by the widespread use of urban fill and a complex network of drains, pipes and tunnels that create “urban karst”, a shallow artificial aquifer, unique to urban settings, that exerts a major, yet often unpredictable influence on groundwater flow and contaminant transport. Management of ground water pollution, and its impact on the receiving Great Lakes, will require rigorous audits of all urban sources of contamination together with the development and calibration of groundwater flow and transport models that will enable the fate of urban pollutants to be reliably predicted even when groundwater is not used for supply.  相似文献   

3.
We conducted a 2-year, multi-gear survey in the lower St. Louis River, which includes the Duluth-Superior harbor, an international shipping port and non-native species invasion “hotspot.” Our objectives were to quantify the contribution of non-native species to the overall fish assemblage and assess their spatial distribution and abundance. We captured 10 non-native fishes; none, however, were first detections. Non-native fishes composed roughly one quarter of the total species richness, were found in 84% of samples, and composed 15% of the total abundance. The spatial distribution and abundance of non-native fishes was dependent on gear selection (and thereby habitat selection), sampling location, and abundance measure (individuals or biomass). We used a recently published non-native species establishment framework to integrate catch data from the different gears. Viewed in the context of this framework, we identified only two non-native fishes, Eurasian ruffe (Gymnocephalus cernuus) and round goby (Neogobius melanostomus), as both widespread and abundant, whereas we identified three as localized and rare. Moreover, the time since first detection of non-native fishes was not predictive of their frequency of occurrence across the study area, underscoring the importance of environmental and biological factors in controlling fish establishment success. Although non-native fishes constitute a considerable portion of the trawl catch in the river channel, from a multi-gear system-wide perspective, native fishes collectively make up the majority of the fish biomass and abundance in the lower St. Louis River.  相似文献   

4.
Cleanup of Great Lakes Areas of Concern (AOCs) restores environmental benefits to waterfront communities and is an essential condition for revitalization. We define waterfront revitalization as policies or actions in terrestrial waterfront or adjacent aquatic areas that promote improvements in human socioeconomic well-being while protecting or improving the natural capital (the stocks of natural assets, biodiversity) that underlies all environmental, social, and economic benefits. Except for economic measures such as development investments, visitation rates, or commercial activity, evidence of waterfront revitalization in the Great Lakes is mostly anecdotal. We offer a perspective on waterfront revitalization that links indicators and metrics of sustainable revitalization to community goals and human beneficiaries. We compiled environmental, social, economic, and governance indicators and metrics of revitalization, many of which are based on or inspired by Great Lakes AOC case studies and community revitilization or sustainability plans. We highlight the role of indicators in avoiding unintended consequences of revitalization including environmental degradation and social inequity. Revitalization indicators can be used in planning for comparing alternative designs, and to track restoration progress. The relevancy of specific indicators and metrics will always depend on the local context.  相似文献   

5.
Coastal wetlands in the Laurentian Great Lakes undergo frequent, sometimes dramatic, physical changes at varying spatial and temporal scales. Changes in lake levels and the juxtaposition of vegetation and open water greatly influence biota that use coastal wetlands. Several regional studies have shown that changes in vegetation and lake levels lead to predictable changes in the composition of coastal wetland bird communities. We report new findings of wetland bird community changes at a broader scale, covering the entire Great Lakes basin. Our results indicate that water extent and interspersion increased in coastal wetlands across the Great Lakes between low (2013) and high (2018) lake-level years, although variation in the magnitude of change occurred within and among lakes. Increases in water extent and interspersion resulted in a general increase in marsh-obligate and marsh-facultative bird species richness. Species like American bittern (Botaurus lentiginosus), common gallinule (Gallinula galeata), American coot (Fulica americana), sora (Porzana carolina), Virginia rail (Rallus limicola), and pied-billed grebe (Podilymbus podiceps) were significantly more abundant during high water years. Lakes Huron and Michigan showed the greatest increase in water extent and interspersion among the five Great Lakes while Lake Michigan showed the greatest increase in marsh-obligate bird species richness. These results reinforce the idea that effective management, restoration, and assessment of wetlands must account for fluctuations in lake levels. Although high lake levels generally provide the most favorable conditions for wetland bird species, variation in lake levels and bird species assemblages create ecosystems that are both spatially and temporally dynamic.  相似文献   

6.
Fallfish (Semotilus corporalis) is a large native minnow that can be both an important food source and a predator on juvenile stream fishes, including salmonids. We developed a fallfish abundance-habitat neural network model. The model explained a large fraction of observed fallfish abundance class variation (R2 = 0.91) and predicted optimal habitat in relatively flat, low elevation, cool to warm streams associated with forested landscapes. The distribution of optimal habitat areas was limited to 9% of the stream network, but one concentration overlapped with the best salmonid production habitat in the Lake Ontario basin. These model results can help managers better understand fallfish distribution and habitat requirements, as well as help them better assess potential interspecific interactions with gamefish in the Lake Ontario–St. Lawrence drainage.  相似文献   

7.
Ballast water regulations implemented in the early 1990s appear not to have slowed the rate of new aquatic invasive species (AIS) establishment in the Great Lakes. With more invasive species on the horizon, we examine the question of whether eradication of AIS is a viable management strategy for the Laurentian Great Lakes, and what a coordinated AIS early detection and eradication program would entail. In-lake monitoring would be conducted to assess the effectiveness of regulations aimed at stopping new AIS, and to maximize the likelihood of early detection of new invaders. Monitoring would be focused on detecting the most probable invaders, the most invasion-prone habitats, and the species most conducive to eradication. When a new non-native species is discovered, an eradication assessment would be conducted and used to guide the management response. In light of high uncertainty, management decisions must be robust to a range of impact and control scenarios. Though prevention should continue to be the cornerstone of management efforts, we believe that a coordinated early detection and eradication program is warranted if the Great Lakes management community and stakeholders are serious about reducing undesired impacts stemming from new AIS in the Great Lakes. Development of such a program is an opportunity for the Laurentian Great Lakes resource management community to demonstrate global leadership in invasive species management.  相似文献   

8.
The presence of persistent bioaccumulative toxics (PBT) in aquatic food chains complicates decision processes of people with a strong culture of fish consumption. This environmental contamination is especially problematic for Native American populations in the Laurentian Great Lakes region (Anishinaabeg). Pursuing the growing discipline of environmental health literacy (EHL) may help reduce toxic exposures, support healthy decision-making, and combat health deficits. Our goals for this research were first to improve environmental health literacy using novel technologies and second to help define environmental health literacy metrics that can be tracked over time, especially regarding culturally-contextualized health interests. We recently reported that a mobile app (Gigiigoo'inaan App) presenting personalized, culturally-contextualized fish consumption advice may improve EHL for the Anishinaabeg. Gigiigoo'inaan App safely supports desired fish consumption rates by putting local data into the hands of the Anishinaabeg. We conducted a pre-test post-test evaluation with 103 Aninishinaabe adults. Participants estimated their current fish meal consumption over a hypothetical month before exposure to the software and then planned their future consumption of fish meals in a month after using the mobile app. Significantly more monthly traditional fish meals on average (Median: 4 vs 2, p = 0.0005) were selected when using the app versus pre-exposure to the app. Significantly more traditional grams of fish were also selected during use of the app relative to the pretest (Median: 680.39 g vs 453.59 g, p = 0.0007). These increases were accompanied by widespread (97%) adherence to conventional advice that minimizes PBT exposure health effects (ATSDR minimum risk levels).  相似文献   

9.
Radiotelemetry was used to investigate detailed movement and summer habitat of brown trout Salmo trutta (size range 157–488 mm TL, n=18) in the Kananaskis River, Alberta. Flows in the Kananaskis River respond to pulsed daily discharge from an upstream hydroelectric generating facility (range 0.15–25 m3 s−1). Wetted area available for brown trout doubled during periods of high flow. Fluctuating river levels did not appear to influence the degree to which brown trout moved within the study site. However, there was evidence that brown trout used cover and pools more as discharge increased. During high flow conditions, brown trout used similar depths (63 cm), and significantly lower surface water velocities than during low flow conditions. Brown trout also moved closer to shore into interstitial spaces among woody debris and root complexes during high flow. Pool habitats were used most often compared with all other habitat types combined. Pools with large woody debris accounted for 75% of all habitat observations. Woody debris was used more often than all other cover types. Results of the study indicate that the effects of river regulation on brown trout appear to have been moderated by woody debris in pools and along river banks, which provided refuge from high water velocities during periods of high flow. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Trout-perch Percopsis omiscomaycus is among the most abundant benthic species in Lake Erie, but comparatively little is known about its ecology. Although others have conducted extensive studies on trout-perch ecology, those efforts predated invasions of white perch Morone americana, Dreissena spp., Bythotrephes longimanus and round goby Neogobius melanostomus, suggesting the need to revisit past work. Trout-perch were sampled with bottom trawls at 56 sites during June and September 2010. We examined diets, fecundity, average annual mortality, sex ratio, and long-term population trends at sites sampled since 1961. Trout-perch abundance fluctuated periodically, with distinct shorter- (4-year) and longer-term (over period of 50 years) fluctuations. Males had higher average annual mortality than females. Both sexes were equally abundant at age 0, but females outnumbered males 4:1 by age 2. Diets of trout-perch were dominated by macroinvertebrates, particularly chironomids and Hexagenia sp. Size distributions of trout-perch eggs varied widely and exhibited multiple modes indicative of protracted batch spawning. A review of the few other studies of trout-perch revealed periodic fluctuations in sex ratio of adults, which in light of our evidence of periodicity in abundance suggests the potential for sex-ratio-mediated intrinsic population regulation. Despite the introduction of numerous invasive species in Lake Erie, trout-perch remain one of the most abundant benthic invertivores and the population is relatively stable.  相似文献   

11.
Bangia atropurpurea was first observed in Lake Erie in 1964 and subsequently spread to the lower Laurentian Great Lakes by the mid to late 1970s. The present study was initiated to examine the recent distribution of B. atropurpurea in the Great Lakes, the seasonal variation of the alga and the putative origin of this species based on DNA sequence analysis. From surveys in 1995 and 2002, this species has clearly spread, with newly identified populations observed in Lakes Huron, Michigan, Georgian Bay and the St. Lawrence River. Morphological analyses showed that Great Lakes populations from individual lakes or neighboring populations did not group together in cluster analyses. Correlation analysis, however, revealed significant relationships between the presence or absence of Bangia among the studied sites with pH and specific conductance as those locations that had stable populations had a mean pH and conductance of 8.2 and 353 μS·cm− 1 respectively. Seasonal variation in morphology of a population from Burlington, Ontario (Lake Ontario, Canada) was examined monthly for one year. Maximum filament length occurred in April, with the greatest diameter and archaeospore production observed in May. Significant correlations were also noted for many morphological characteristics with water temperature, population height on the shoreline relative to the waterline and total phosphorus. Collections of B. atropurpurea analyzed from the Great Lakes were observed to be identical in sequence to collections of European freshwater Bangia in the cox2–3 gene spacer, the nuclear internal transcribed spacers (ITS 1 and 2) and the 5.8S rRNA gene (between the small and large subunits of the rRNA gene). These results suggest a recent European origin; however, further global collections of B. atropurpurea and microsatellite analyses are necessary to confirm this hypothesis.  相似文献   

12.
我国污水处理理想价格及合理投资结构测算分析   总被引:4,自引:0,他引:4  
王希希  陈吉宁 《给水排水》2004,30(11):43-46
通过测算满足城市污水处理厂投资需求的污水处理理想价格水平 ,现行城市污水处理价格体系下的理想投资结构以及不同价格水平下单位政府投资带动社会资本的能力 ,分析现行污水处理价格与理想价格之间的差距 ,政府投资对社会资本的带动能力及二者间的合理比例  相似文献   

13.
Concentration patterns and temporal trends of legacy persistent, bioaccumulative and toxic (PBT) contaminants were determined using the Great Lake Fish Monitoring and Surveillance Program (GLFMSP) top predator fish data from 1999 to 2014 and applying Kendall-Theil robust regression after cluster-based age normalization. For most Great Lakes sites, significant decreasing concentration trends ranging from ?4.1% to ?21.6% per year (with the only exception being mirex in Lake Erie walleye) were found for PBTs including polychlorinated biphenyls (PCBs), dichloro-diphenyl-trichlorethane (DDTs), dieldrin, endrin, chlordane, oxychlordane, nonachlor, mirex, and hexachlorobenzene (HCB) reflecting the successful historical and ongoing reduction of fugitive releases and remediation efforts in the U.S. and Canada including physical removal (dredging) coupled with sediment sequestration. Generally, lower concentrations and faster decreasing trends are observed in western/northern sampling sites compared to eastern/southern sites as the former sites are generally more remote from population centers and industrial activities. PCBs, which can be released from ongoing sources, have the highest concentration, the second slowest decreasing trend, and increasing mass fractions of the contaminants studied suggesting that they will continue to be the legacy contaminant of greatest concern into the future.  相似文献   

14.
Contiguous with their range across major rivers into Canada, two different species of chorus frogs are now thought to inhabit the Great Lakes watersheds of New York. Pseudacris triseriata is found along the western Lake Ontario and Lake Erie plains while P. maculata (tentatively a new frog species in NY) inhabits the lowlands of eastern Lake Ontario and the St. Lawrence River. Both species are on their extreme range margins in NY. In 2010 we detected distributional declines of both putative chorus frog species based on a broad survey following standardized occupancy detection protocols. Causes are unclear but could relate to reforestation and urbanization of formerly more extensive agricultural lands, climate change, pathogenic fungal outbreaks and/or the contaminant effects of intensive agriculture. On the other hand, the prior overestimation of ranges because of misidentification may have inflated earlier perceived distributions (positive survey bias) because false positives are problematical for this cryptic frog. At broad geographical scales, chorus frog (meta)populations are highly dynamic and are likely shifting their ranges in response to rapidly changing overall environmental conditions in the northeastern U.S. and Canada.  相似文献   

15.
Ecological interactions between native and non-indigeneous species depend on interspecies dietary and habitat overlap and species-specific behavior. In the Great Lakes, the exotic round goby (Apollonia melanostoma) is very abundant in littoral areas used by the native yellow perch (Perca flavencens). We examined yellow perch-round goby interactions using multiple approaches. Field surveys analyzing dietary overlap among three size classes of yellow perch and round goby detected significant overlap only between juvenile perch (< 95 mm TL) and gobies (< 60 mm TL). Laboratory experiments using juvenile stages tested for habitat preference differences (open sand, macrophytes and dreissenids) in solitary, intraspecific (2 perch) and interspecific (1 perch, 1 goby) treatments. In macrophyte and dreissenid habitats, we tested for treatment differences in fish behavior (intraspecific vs. interspecific) and yellow perch growth (solitary, intraspecific and interspecific). Round goby consistently preferred complex habitats. Yellow perch showed diurnal preference of complex habitats, but increased nocturnal use of sand in the solitary and interspecific treatments. Activity was greater in dreissenid than macrophyte habitat, but prey attacks showed the opposite trend. Activity and prey attacks were greater in the intraspecific than interspecific treatments. The trend was due to lower prey attacks executed by round goby. In macrophytes, individual yellow perch growth was lower in the intraspecific than in the solitary and interspecific treatments. In dreissenids, intraspecific and interspecific competitors equally decreased yellow perch growth. Our results suggest differences in diet, habitat preference and behavior between juvenile round goby and yellow perch may allow their coexistence in nearshore areas.  相似文献   

16.
Forty-five suspended solids collected during 1974 and 1976 from 12 streams on the Canadian side of the Great Lakes contained no detectable residues of triazines to a limit of 0.05 μg/g. Of ninety-two stream waters sampled in July, 1977, 77% contained atrazine, 52% desethylatrazine, and 28% simazine above a detectable level of 0.03 μg/L. Mean concentrations of these three triazines in the 92 streams were 1.6, 0.3, and 0.2 μg/L respectively. The highest mean triazine residue occurred in those stream waters entering Lake Erie (4.0 μg/L); there was little difference in the mean concentrations of waters entering Lakes Ontario (1.1 μg/L), St. Clair (1.3 (μg/L), and Huron (1.4 μg/L). While triazine herbicides were found entering the Great Lakes there was no threat to water quality as defined by the objectives of the International Joint Commission.  相似文献   

17.
We analyzed and compared the structure of bacterial communities associated with zebra mussel mantle cavity fluid, gills, and gut samples collected from Lake Loon, an inland lake in Michigan's Lower Peninsula (U.S.A.) using partial 16S rRNA gene sequencing. A total of 713 cloned 16S ribosomal gene sequences were checked for similarity to existing 16S sequences in two public databases: the Ribosomal Database Project and BLAST. Based on a 98% sequence similarity threshold, a total of 355 phylotypes belonging to 12 bacterial phyla and the phylum Bacillariophyta (diatoms) were identified in zebra mussel samples. A dominance of sequences belonging to the class γ-proteobacteria was observed in the mantle cavity clone libraries (P < 0.0001). Significant sample-specific sequence associations (P < 0.001) included members of the orders Pseudomonadales and Vibrionales in mantle cavity fluid and gut clone libraries, members of both the phylum Actinobacteria and the class δ-proteobacteria in gill clone libraries, and the Cyanobacteria/Bacillariophyta group in gut clone libraries. Furthermore, our results suggest that the zebra mussel may serve as a reservoir for facultative and opportunistic pathogenic bacteria, e.g., Clostridium spp., Flavobacterium spp. and Mycobacterium spp., for many aquatic and terrestrial animals. This work constitutes the first account of the heterogeneity of bacterial communities associated with multiple compartments within the zebra mussel. The information gained in this study significantly contributes to what is known regarding the microbial ecology of the zebra mussel and its role in disease ecology and food-web shifts in the Great Lakes ecosystem.  相似文献   

18.
We tracked 335 northern squawfish implanted with radio transmitters in the Columbia River in May–December 1993 and May–September 1994. Most fish were released near The Dalles and John Day dams, with the remaining fish released into reservoir areas away from dams. We used boats with mounted Yagi antennas, fixed site receiver stations near the dams and aerial surveys to track movements of tagged northern squawfish. Northern squawfish were commonly associated with water <5 m deep, water velocities <1 m/s and were <45 m from shore. The average movement from the release site was 19.5 km; fish released near dams remained closer to their release sites than fish released into reservoirs. Short-term movements (successive observations within 24 h) comprised 75% of all detected movements, represented fish moving short distances (mean=0.96 km) between dams and down-river areas and corresponded to increased passage of juvenile salmonids. Long-term movements (successive observations exceeding 24 h) were mainly attributed to fish released into the reservoirs moving up-river to a dam, and fish moving between the two dam tailrace areas. A strong up-river movement trend terminating at John Day Dam tailrace in June suggested that spawning occurred nearby. Reduced numbers of observations of fish in the autumn suggested that northern squawfish moved away from dam areas and into deeper water for the winter. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
Widespread growth of cities, the association of trace metals with urban runoff, and the potentially deleterious effect of metals on aquatic ecology have made it important to understand the distribution and transport of metals through surface water channel networks. The Don River in Toronto, Canada has been identified as an Area of Concern for pollution to Lake Ontario, with historically high levels of metal contamination. Sampling programs are sparse, therefore a model is needed to understand the spatial and temporal variability of metals in the river network. The objectives of the current study are to: i) describe the sampled spatial and temporal variability of metals in the Don River and ii) develop a modelling strategy to describe within flood metal transport dynamics. A model setup tool is developed that links Storm Water Management Model (SWMM) with the Environmental Fluid Dynamics Code (EFDC) to allow a seamless transition from catchment hydrology to in-stream hydraulic and chemical processes. Results show that lead pollution in the Don River is decreasing, likely as a result of policy changes and sediment dredging in the mouth of the river. However, zinc and copper pollution are increasingly problematic, with copper exceeding recommended lower guidelines, particularly during floods. Model results confirm that most of the sediment and metals are transported in relatively short bursts within longer flood durations and are stored in depositional hotspots within the Lower Don River. A better monitoring strategy is needed to understand and more accurately parametrize these processes in an urban river system.  相似文献   

20.
1. Kielder Reservoir regulates the Rivers North Tyne and Tyne. It provides a regular supply of water for downstream users, supports abstractions for a major water transfer scheme and provides hydroelectric power (HEP). Kielder's release regime typically alternates between a 1.3 m3 s−1 compensation flow and 10–15 m3 s−1 HEP releases of between 3 and 7 days in duration. Occasionally releases of up to 30 m3 s−1 are made for the purpose of encouraging fish runs, for recreational events or to help in water quality management. The impacts of this release regime on Atlantic salmon (Salmo salar) and brown trout (S. trutta) habitat at four sites on the North Tyne are assessed and alternative regimes, designed to minimize impacts, are presented. 2. There is no evidence that the compensation flow results in extreme loss of instream habitat. A discharge of 1.3 m3 s−1 ensures that water is maintained over most of the channel area at sites representative of upper, middle and lower sections of the North Tyne. This discharge lies above breaks in slope of respective site discharge versus wetted area curves; thus, disproportionate increases in discharge would be needed to increase wetted area. Simulations using the Physical Habitat Simulation System (PHABSIM) suggest that the compensation flow provides between 50% and 90% of the maximum possible weighted usable area (WUA) for juvenile (0+) salmonids. 3. During HEP releases, juvenile salmonid habitat (WUA) apparently falls to between 20 and 40% of site maxima. Newly emerged juvenile fish (March and April) are most affected by HEP releases because they are relatively small (25 mm in length) and water temperatures are relatively low at this time of year. During March and April, critical near‐bed displacement velocities for newly emerged fish may be exceeded across large parts (80%) of sites up to 8 km downstream from Kielder Reservoir; fish would either be displaced downstream or forced to relocate to flow refuge areas. 4. The availability of Atlantic salmon spawning habitat (WUA) at a key site is limited by the compensation flow; 1.3 m3 s−1 provides approximately one third of the habitat available at the optimum discharge (4 m3 s−1). At this site, a discharge of approximately 2 m3 s−1 is needed to ensure most of the bed is inundated by water. Regulation has reduced the duration of flows exceeding 2 m3 s−1 from 90 to 60% of the spawning season. 5. Simulations suggest that when discharge drops from 30 m3 s−1 to the compensation flow, up to 60% of the optimum spawning habitat available at the former discharge may be left stranded (dry). This could potentially lead to egg or alevin mortality. 6. PHABSIM simulations suggest that increasing the compensation flow to 4 m3 s−1 during the spawning period (November and December) is likely to increase the availability of suitable spawning habitat. Also, increasing the compensation flow to 2 m3 s−1 during the incubation period (January through March) would minimize redd stranding. Reductions in the number of HEP releases in March and April would limit the extent to which newly emerged fish are exposed to velocities that potentially displace them. Such changes to the Kielder release regime may have implications for water resource management. While it is important that the biological instream flow requirements of the North Tyne are incorporated into the Kielder operating policy, these should be integrated along with the need for channel maintenance flows, downstream water supply abstractions and HEP generation, as well as for transfers of water to other catchments. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号