首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flat anodes placed close to the cathode or membrane to reduce distances between electrodes in microbial electrolysis cells (MECs) could be used to develop compact reactors, in contrast to microbial fuel cells (MFCs) where electrodes cannot be too close due to oxygen crossover from the cathode to the anode that reduces performance. Graphite fiber brush anodes are often used in MECs due to their proven performance in MFCs. However, brush anodes have not been directly compared to flat anodes in MECs, which are completely anaerobic, and therefore oxygen crossover is not a factor for felt or brush anodes. MEC performance was compared using flat felt or brush anodes in two-chamber, cubic type MECs operated in fed-batch mode, using acetate in a 50 mM phosphate buffer. Despite placement of felt anodes next to the membrane, MECs with felt anodes had a lower hydrogen gas production rate of 0.32 ± 0.02 m3-H2/m3-d than brush anodes (0.38 ± 0.02 m3-H2/m3-d). The main reason for the reduced performance was substrate-limited mass transfer to the felt anodes. To reduce mass transfer limitations, the felt anode electrolyte was stirred, which increased the hydrogen gas production rate to 0.41 ± 0.04 m3-H2/m3-d. These results demonstrate brush electrodes can improve performance of bioelectrochemical reactors even under fully anaerobic conditions.  相似文献   

2.
Binder-free NiO/MnO2-carbon felt electrode is prepared with a facile two-step hydrothermal method. The NiO self-grown on the carbon felt is used as the skeleton structure to support the in-situ growth of MnO2. Both the core and shell materials are excellent pseudocapacitance materials. The compositing of such pseudocapacitance metal oxides can produce synergistic effects, so that the modified electrode has a high capacitance. NiO/MnO2-carbon felt electrode also possesses a high specific surface area, super hydrophilicity and good biocompatibility, which are conducive to the enrichment of typical exoelectrogen Geobacter. As the anode, NiO/MnO2-carbon felt electrode can effectively improve the electricity generation and methyl orange (MO) wastewater degradation performances of microbial fuel cell (MFC). The highest output voltage and the maximum power density of MFC with NiO/MnO2-carbon felt anode are respectively 652 mV and 628 mW m?2, which are much higher than those of MFC with MnO2-carbon felt anode (613 mV, 544 mW m?2), NiO-carbon felt anode (504 mV, 197 mW m?2) and unmodified carbon felt anode (423 mV, 162 mW m?2). The decolourization efficiency and the chemical oxygen demand (COD) removal rate of MO for MFC with NiO/MnO2-carbon felt anode are respectively 92.5% and 58.2% at 48 h.  相似文献   

3.
Indium tin oxide (ITO)-free organic solar cells were fabricated with highly conductive and transparent tosylate-doped poly(3,4-ethylenedioxythiophene: p-toluene sulfonate) (PEDOT:PTS) anodes of various thicknesses that were prepared by the vapor-phase oxidative polymerization of EDOT using Fe(PTS)3 as an oxidant. Both solution-processable layers - PEDOT:PSS and photoactive P3HT:PCBM - were spin coated. The anodes transmittance and conductivity varied with thickness. Power conversion efficiency was maximized at 1.4%. The ITO-free organic solar cells photovoltaic characteristics are qualitatively compared with those of ITO-based organic solar cells to explore the possibility of replacing costly, vacuum-deposited ITO with highly conductive, patterned polymer films fabricated by inexpensive vapor-phase polymerization.  相似文献   

4.
3-D highly conductive polyvinyl formaldehyde sponges functionalized with acrylamide are fabricated using polyvinyl alcohol with varying concentrations of graphite nanopowder. The properties of the fabricated anodes are analyzed and its application in microbial fuel cells is evaluated. A comparative study with Graphite felt is also performed to evaluate its commercial viability. The presence of Hydroxyl and Amine functional groups enhanced the hydrophilic and biocompatible nature of the synthesized anodes. The phylogenetic analysis substantiated the biocompatible nature and mercury porosimetry showed macroporous nature of the fabricated anode. The highest power density of ~8 W/m2 is recorded for C10 establishing solid biofilm formation. A ~94% COD removal revealed the versatility of the anode for MFC based wastewater treatment. The MFC performance was twice than that of control and was also highest among the most reported modified 3-D anodes. The durability study displayed the commercial opportunity of the anode for real-time MFC operation.  相似文献   

5.
Super-capacitor (SC) activated-carbon (AC) carbon-nanotubes (CNTs) (SC-AC-CNTs) is a kind of AC-based composite material and it combines the advantages of carbon nanotubes and activated carbon, including a series of peculiar properties such as low charge transmission resistance, super large specific area and excellent power characteristic. In this study, SC-AC-CNTs are first used to modify the carbon cloth (CC) anodes of microbial fuel cells (MFCs) and compared with that of SC-AC and CC. The measurements show that the specific surface area is increased from 219.519 m2 g?1 to 283.643 m2 g?1 after modification. The new anode is assembled in a urine-powered MFC (UMFC) to test its effectiveness. It is found that the amount of microorganisms attached on the new anode is much larger than that on the blank anode in UMFC. The maximum power densities of the UMFC assembled with SC-AC-CNTs and SC-AC modified anodes are 899.52 mW m?2 and 555.10 mW m?2, which are 2.9 and 1.8 times of that of the blank UMFC, respectively. The tests also shows that the UMFC with SC-AC-CNTs-modified anode creates a much longer duration of 105 h at high-voltage plateau in a single cycle that is about 2–3 times of the other two groups. These findings demonstrate that these two double layer capacitor materials can effectively boost overall MFC performance.  相似文献   

6.
Polyaniline (PANI)/reduced graphene oxide (rGO) were synthesized by in-situ polymerization and were decorated on mesophase pitch-based carbon fiber brush (Pitch-CB) anode to promote microbial fuel cells (MFCs) power production. Mesophase pitch-based carbon fiber brush (Pitch-CB) becomes one of the most important research objects in MFCs. The mesophase pitch-based carbon fiber (CF) has excellent conductivity (about 2.0 μΩ m) compared with PAN-based CF (about 30 μΩ m). But the high conductive CF's surfaces have strong inert, and they are relatively smooth, which make it difficult to be adhered and enriched by microbes. By applying the PANI/rGO composite anode, the maximum power density (MPD) was increased to 862 mW m?2, which was approximately 1.21 times higher than that of the Pitch-CB. The PANI can improve the surface roughness and surface potential of CFs, thus enhancing the adhesion of microbes and electrogenic performance of MFC. After the rGO was doped, the electrogenic performance of MFC was further improved. This study introduces a promising modifying method for the fabrication of high-performance anodes from simple, environment-friendly materials.  相似文献   

7.
A graphite electrode and a stainless steel electrode immersed in exactly the same medium and polarised at the same potential were colonised by different microbial biofilms. This difference in electroactive microbial population leads stainless steel and graphite to become a microbial cathode and a microbial anode respectively. The results demonstrated that the electrode material can drive the electrocatalytic property of the biofilm opening perspectives for designing single medium MFC.This new discovery led to of the first demonstration of a “single medium MFC.” Such a single medium MFC designed with a graphite anode connected to a stainless steel cathode, both buried in marine sediments, produced 280 mA m?2 at a voltage of 0.3 V for more than 2 weeks.  相似文献   

8.
To clearly illustrate the activity effect of multi-walled carbon nanotubes (MWCNTs) and their functionality on anodic exoelectrogen in microbial fuel cells (MFCs), the growth of E. coli and anode biofilm on MWCNT-, MWCNTCOOH and MWCNTNH2 modified anodes were compared with a bare carbon cloth anode. The activity effect was characterized by the amount of colony-forming units (CFUs), activity biomass, morphology of biofilms and cyclic voltammetric (CV). The results showed that MWCNTs, MWCNT-COOH and MWCNT-NH2 exhibited good biocompatibility on exoelectrogenic bacteria. The performance of MFCs were improved through the introduction of MWCNT-modified anodes, especially in the presence of COOH/NH2 groups. The MFCs with the MWCNTCOOHmodified anode achieved a maximum power density of 560.40 mW/m2, which was 49% higher than that obtained with pure carbon cloth. In conclusion, the positive effects of MWCNTs and their functionality were evaluated for promoting biofilm formation, biodegradation and electron transfer on anodes. Specifically, the MWCNTCOOHmodified anode demonstrated the largest application potential for the development of MFCs.  相似文献   

9.
A two-chambered microbial fuel cell (MFC), which can function on the self-driven bio-electrogenic activity operated on anaerobically digested distillery waste (ADDW) i.e. wastewater post anaerobic digestion was designed and fabricated in the laboratory. MFC was evaluated for production of bioelectricity with a simultaneous reduction in the carbon content. Using a surface response methodology with a Box-Behnken design (BBD), operating conditions such as the concentration of antifoam, pH, and resistance were optimized and it was found that the pH and resistance were optimum at 8.3 and 1000 Ω, respectively with no antifoam in the system. Under optimum conditions, 31.49 Wm?3 was generated, and 60.78 ± 0.95% total organic carbon was degraded. We revealed that the fermentative bacteria generated organic acids mainly acetate from dextrose present in ADDW and electrogenic bacteria oxidized acetate in a successive manner to generate electrons, which was confirmed by gas chromatography. The development of biofilm analyzed by scanning electron microscope (SEM) was found to be crucial in the transfer of electrons directly to the anode and was confirmed by cyclic voltammetry experiments. Identification of bacteria from biofilm by both culture and denaturing gradient gel electrophoresis methods found bacteria belonging to phylum Firmicutes and γ-proteobacteria. The study of successive nature of bacterial metabolism to generate electricity could play an important role in the production of electricity in a continuous mode of operation using MFCs fed with ADDW for further reduction of carbon content post anaerobic digestion for the benefit for the environment. Thus MFC can be used as a complementary technology to anaerobic digestion.  相似文献   

10.
Microbial fuel cells (MFCs) represent a new approach that can simultaneously enhance the treatment of waste streams and generate electricity. Although MFCs represent a promising technology for renewable energy production, they have not been successfully scaled-up mainly due to the relatively-low electricity generation and high cost associated with MFCs operation. Here, we investigated whether graphitic mesoporous carbon (GMC) decoration of carbon felt would improve the conductivity and biocompatibility of carbon felt anodes, leading to higher biomass attachment and electricity generation in MFCs fed with an organic substrate. To test this hypothesis, we applied 3 different GMC loading (i.e., 2, 5, and 10 mg/cm2 of anode surface area) in MFCs compared to control MFCs (with pristine carbon felt electrodes). We observed that the internal resistances of modified anodes with GMC were 1.2–2.3-order of magnitude less than pristine carbon felt anode, leading to maximum power densities of 70.3, 33.3, and 9.8 mW/m2 for 10, 5, and 2 mg/cm2-doped anode, respectively compared to only 3.8 mW/m2 for the untreated carbon felt. High-throughput sequencing revealed that increasing the GMC loading rate was associated with enriching more robust anode-respiring bacteria (ARB) biofilm community. These results demonstrate that 3-D GMC-doped carbon felt anodes could be a potential alternative to other expensive metal-based electrodes for achieving high electric current densities in MFCs fed with organic substrates, such as wastewater. Most importantly, high electron transfer capability, strong chemical stability, low cost, and excellent mechanical strength of 3-D GMC-doped carbon felt open up new opportunities for scaling-up of MFCs using cheap and high-performance anodes.  相似文献   

11.
In the present work, the wild type Klebsiella variicola was investigated in double chamber microbial fuel cell (MFC) using palm oil mill effluent as substrate which achieved high power density (4.5 W/m3) and coulombic efficiency (63%) while maintaining the moderate chemical oxygen demand (COD) removal efficiency (58%). The effect of biofilm formation on power generation over time was also evaluated and found that an effective biofilm with the discrete distribution of single layer microorganisms can produce high power corresponding to low charge transfer resistance. The growth of biofilm in multilayers consisting of outnumbered dead cells in the vicinity of the electrode surface caused the polarization resistance and diffusion resistance resulting in a sharp drop in the current generation. The removal of multilayer biofilm from the anode surface positively influenced the cell performance which led to a rapid increase in current generation and thus revealed that effective biofilm predominated by live cells can be an emergent factor for achieving maximum performance in MFC.  相似文献   

12.
A carbon nanotube (CNT)/polyaniline (PANI) composite is evaluated as an anode material for high-power microbial fuel cells (MFCs). Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) are employed to characterize the chemical composition and morphology of plain PANI and the CNT/PANI composite. The electrocatalytic behaviour of the composite anode is investigated by means of electrochemical impedance spectroscopy (EIS) and discharge experiments. The current generation profile and constant current discharge curves of anodes made from plain PANI, 1 wt.% and 20 wt.% CNT in CNT–PANI composites reveal that the performance of the composite anodes is superior. The 20 wt.% CNT composite anode has the highest electrochemical activity and its maximum power density is 42 mW m−2 with Escherichia coli as the microbial catalyst. In comparison with the reported performance of different anodes used in E. coli-based MFCs, the CNT/PANI composite anode is excellent and is promising for MFC applications.  相似文献   

13.
Considering the promising application of microbial fuel cells (MFCs) in the wastewater treatment, the inherent solid particles in the wastewater may affect the MFC performance. In this paper, the effect of inert particle concentration on the operation of MFCs is investigated by adding silicon dioxide (SiO2) particles into the anolyte. The results show that the existing SiO2 particles in the anolyte result in a decreased active biomass and a reduced electrochemical activity of the biofilm. The anode ohmic resistance is almost the same for MFCs with various SiO2 particle concentrations in the anolyte, while an increase in the charge transfer resistance is observed. A small amount of inert particles have little influence on the MFC. However, when the MFC is operated with the anolyte containing more than 500 mg L−1 SiO2 particles, the performance decreases significantly due to the low electrochemical activity and high internal resistance of the anode.  相似文献   

14.
This paper describes a numerical and experimental analysis of the optimum loadings of noble metals (Pt, Ir) in electrocatalytic layers of the polymer electrolyte membrane (PEM) water electrolysis cells. Based on the obtained results, the Pt loading of ca. 0.4 mg/cm2 (or 1 mg/cm2 of Pt/C with 40 wt. % of Pt) and ca. 2.5 mg/cm2 of IrO2 loading could be recommended. The developed mathematical model has shown that these optimum values are derived from the interference of activation and ohmic losses in the electrocatalytic layers. The membrane-electrode assembly (MEA) with these noble metal contents does not exhibit significant catalytic layer degradation within 4000 h of operation.  相似文献   

15.
A new nanocomposite material was fabricated by a facile and reliable method for microbial fuel cell (MFC) anode. Tin oxide (SnO2) nanoparticles were anchored on the surface of reduced graphene oxide (RGO/SnO2) in two steps. The hydrothermal method was used for the modification of GO and then microwave-assisted method was used for coating of SnO2 on the modified GO. Nanohybrids of RGO/SnO2 achieved a maximum power density of 1624 mW m−2, when used as the MFC anode. The obtained power density was 2.8 and 4.8 times larger than that of RGO coated and bare anodes, respectively. The electrodes were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The electrochemical characteristics were also studied by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). The high conductivity and large specific surface of the nanocomposite were greatly improved the bacterial biofilm formation and increased the electron transfer. The results demonstrate that the RGO/SnO2 nanocomposite was advantageous material for the modification of anode and enhanced electricity generation of MFC.  相似文献   

16.
A novel carboxylated multiwalled carbon nanotubes/carbon nanofibers (CNTs/CNFs) composite electrode was fabricated by electrospinning. Heat pressing process was applied to improve the interconnection of fiber aggregates, mechanical stability and reduce the contact resistance. Optimal dose of carbon nanotubes was selected to fabricate the anode in microbial fuel cells after comparing with plain electrospinning CNFs anode and commercial carbon felt (CF) anode. As a result, the optimal anode delivered a maximum power density of 362 ± 20 mW m−2, which is 110%, 122% higher than that of carbon nanofibers and carbon felt anodes. Cyclic voltammograms, Tafel and electrochemical impedance spectroscopy tests also verified that the prepared electrode has largest catalytic current (148 μA cm−2) and exchange current density i0 (6.3 × 10−5 A cm−2), as well as smallest internal resistance (∼40 Ω). The as-prepared anode exhibited a better conductivity, excellent biocompatibility, good hydrophilicity and superior electrocatalytic activity, which was not only beneficial to the attachment and reproduction of microorganisms, but also promoted extracellular electron transfer between bacteria cells and the anode. This result shows that electrospinning has a promising perspective in fabricating high performance electrodes for microbial fuel cells.  相似文献   

17.
Microbial fuel cells (MFC) are bio-electrochemical devices used for the generation of electricity from biomass. A single chamber membrane less air-breathing cathode microbial fuel cell (SCMFC) with two different anode configurations was investigated for energy generation using shewanella putrifaciens as bio-catalyst. The graphite felt (GF) anode was modified with 0.008 g/cc polypyrrole nanoparticles (Ppy-NPs) and 0.024 g/cc polythiophene nanoparticles (PTh-NPs) by conventional method. The nanoparticles coating improved the properties such as thermal characteristics and electron transfer capabilities of the anodes, which was confirmed by Thermogravimetric analysis (TGA), electrochemical impedance spectroscopy (EIS) and cyclic voltametry (CV). The variation in the cell potential with time under open circuit condition resulted in voltages of 0.842V and 0.644 V for Ppy-NP and PTh-NP modified GF respectively. A maximum power density (1.22 W/m2) was obtained for Ppy-NP modified GF than PTh-NP modified GF (0.8 W/m2). The results showed that GF coated with nano conductive polymers such as Ppy and PTh are the promising candidates for the best performance of a MFC.  相似文献   

18.
Two biological methods for treatment of cheese whey and concentrated cheese whey were investigated in this research. As the first method, fermentation of cheese whey for production of lactic acid, in an immobilized cell reactor (ICR) was successfully carried out. The immobilisation of Lactobacillus bulgaricus was performed by the enriched cells cultured media harvested at exponential growth phase. Furthermore, the FTIR analysis has been done to prove the production of lactic acid. The COD removal during the continuous process for both whey and concentrated whey was above 70% which showed the capability of reaction for wastewater treatment. The cells were immobilised by sodium alginate as a perfect polymer in this regard. The maximum produced lactic acid from whey was 10.7 g l?1 at 0.125 h?1 and 19.5 g l?1 from concentrated whey at 0.063 h?1. Finally it can be concluded that the process is efficient for lactic acid production and COD removal simultaneously. As the second studied method, whey and concentrated cheese whey were used as the sources of carbon in a microbial fuel cell. The power densities of 188.8 and 288.12 mW m?2 were recorded for whey-fed and concentrated whey-fed MFCs while the COD removal were 95% and 86% respectively. Biological wastewater treatment can be a very efficient alternative for traditional wastewater treatment which selecting any and or integrating of them depends on specific applications needed to be achieved.  相似文献   

19.
Electroceramic support materials can help reducing the noble-metal loading of iridium in the membrane electrodes assembly (MEA) of proton exchange membrane (PEM) electrolyzers. Highly active anodes containing Ir-black catalyst and submicronic Ti4O7 are manufactured through screen printing technique. Several vehicle solvents, including ethane-1,2-diol; propane-1,2-diol and cyclohexanol are investigated. Suitable functional anodic layer with iridium loading as low as 0.4 mg cm?2 is obtained. Surface properties of the deposited layers are investigated by atomic force microscopy (AFM). The most homogeneous coating with the highest electronic conductivity is obtained using cyclohexanol. Tests in PEM electrolyzer operating at 1.7 V and 40 °C demonstrate that the CCM with anode coated with cyclohexanol presents a 1.5-fold higher Ir-mass activity than that of the commercial CCM.  相似文献   

20.
An anaerobic sequencing batch biofilm reactor (AnSBBR) treating a mixture of dairy industry wastewater and biodiesel production wastewater (co-digestion of whey with glycerin) was applied to hydrogen production. The influence of fed-batch and batch mode, cycle time and interactions effects between influent concentration and cycle time (2, 3 and 4 h) over the organic loading rate were assessed in order to obtain a sensitivity analysis for important operational variables to the reactor. It was possible to find an optimal cycle time of 3 h with an influent concentration of 7000 mgCOD L?1 (molar productivity 129.0 molH2 m?3 d?1 and yield 5.4 molH2 kgCOD?1). Reactor operation in fed-batch mode allowed higher hydrogen production rates. Increasing the influent concentration (with a constant cycle time) was better for the hydrogen production process than decreasing the cycle length (with a constant influent concentration), which means that these two parameters have different weights in the organic loading rate. The best operational conditions produce hydrogen via acetic, butyric and valeric acids similarly. The system is able to produce 1.3 kJ per gram of COD applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号