首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The gas hydrates' ability to preferentially bind one of the components of a gas mixture into a hydrate state makes it possible to consider hydrate-based technology as promising for the separation of gas mixtures. When a hydrate is obtained from a gas mixture, mixed hydrates with a complex composition inevitably occur. Issue of their composition determination stays apart. This a rather difficult task, which is complicated by the dissolution of small molecules such as hydrogen in the hydrate phase. This, in turn, impedes the analysis of the data obtained. In this work, the solubility of hydrogen in carbon dioxide hydrate in the range of 269.7–275.7 K and at partial H2 pressure up to 4.5 MPa was experimentally determined. Hydrate composition was found to be CO2·(0.01X)H2·6.5H2O at H2 pressure of X MPa. The equilibrium conditions of hydrates formation in the systems of H2O – CO2 – H2 and H2O – 2-propanol – CO2 – H2 were also determined in a wide range of hydrogen concentrations. Hydrogen seems to be an indifferent diluent gas regarding CO2 hydrate equilibrium pressure. The compositions of the equilibrium phases have been determined as well. It was shown that isopropanol does not form a double hydrate with СО2, only sI СО2 hydrate occurred in the studied systems. The obtained dependencies will be useful in analyzing the process of СО2 + Н2 gas mixtures separation by the hydrate-based method.  相似文献   

2.
In this work, hydrate based separation technique was combined with membrane separation and amine-absorption separation technologies to design hybrid processes for separation of CO2/H2 mixture. Hybrid processes are designed in the presence of different types of hydrate promoters. The conceptual processes have been developed using Aspen HYSYS. Proposed processes were simulated at different flow rates for the feed stream. A comprehensive cost model was developed for economic analysis of novel processes proposed in this study. Based on the results from process simulation and equipment sizing, the amount of total energy consumption, fixed cost, variable cost, and total cost were calculated per unit weight of captured CO2 for various flow rates of feed stream and in the presence of different hydrate promoters. Results showed that combination of hydrate formation separation technique with membrane separation technology results in a CO2 capture process with lowest energy consumption and total cost per unit weight of captured CO2. As split fraction and heat of hydrate formation increases, the share of hydrate formation section in total energy consumption increases. When TBAB is applied as hydrate promoter, due to its higher hydrate separation efficiency, more amount of CO2 is captured in hydrate formation section and consequently the total cost for process decreases considerably. Hybrid hydrate-membrane process in the presence of TBAB as hydrate promoter with 29.47 US$/ton CO2 total cost is the best scheme for hybrid hydrate CO2 capture process. Total cost for this process is lower than total cost for single MDEA-based absorption process as the mature technology for CO2 capture.  相似文献   

3.
Holding CO2 at massive scale in enclathrated solid matter called hydrate can be perceived as one of the most reliable method for CO2 storage in subsurface geological environment. In this study, a dynamically coupled mass, momentum, and heat transfer mathematical model is developed, which elaborates uneven behavior of CO2 flowing into porous medium in space and time domain and converting itself into hydrates. The combined numerical model solution methodology by explicit finite difference iteration method is provided and through coupling the mass, momentum, and heat conservation relations, an integrated model can be presented to investigate the CO2 hydrate growth within P-T equilibrium conditions. The article results illustrate that pressure distribution in hydrate formation becomes stable at initial phase of hydrate nucleation process, but formation temperature is unable to maintain its stability and varies during CO2 injection and hydrate nucleation process. The hydrate growth rate increases by increasing injection pressure from 15 MPa to 16 and 17 MPa in 500-m-long formation, and it also expands overall hydrate-covered length from 200 m to 280 m and 320 m, respectively, in 1 month of hydrate growth period. Injection pressure conditions and hydrate growth rate affect other parameters like CO2 velocity, CO2 permeability, CO2 density, and CO2 and H2O saturation. In order to enhance hydrate growth rate and expand hydrate-covered length, injection temperature is reduced from 282 K to 280 K, but it did not give satisfactory outcomes. In addition, hydrate growth termination and restoration effect is also witnessed due to temperature variations.  相似文献   

4.
The kinetics of formation of semi-clathrate hydrates of tetra n-butyl ammonium fluoride (TBAF) with hydrogen (H2) and carbon dioxide (CO2) were studied in order to elucidate their potential for H2 storage as well as for CO2 sequestration. The influence of pressure, TBAF concentration (1.8 mol% and 3.4 mol%) and formation method (T-cycle method and T-constant method) on the hydrate nucleation, hydrate growth and the amount of gas uptake were determined. The results showed that the kinetics of formation of H2–TBAF semi-hydrates is favored at high pressures and TBAF concentrations. The TBAF concentration did not display a large influence on the kinetics of formation of CO2–TBAF semi-hydrates and pressure only showed a major influence on the formation rate. Instead, the induction time and the amount of CO2 consumed were favored at low temperatures. Additionally, in situ Raman spectroscopy was used to confirm the gas uptake in the hydrate structure and to observe structural changes.  相似文献   

5.
CO_2置换CH_4水合物具有在开采天然气水合物的同时储藏CO_2的功能.天然气水合物因其可燃烧、燃烧后污染小、储量巨大等特点被认为是未来最有可能的能源替代品,但CO_2置换天然气水合物存在反应周期长、置换速率低的缺点.提出了一种借助CO_2水合物生成热量激励CH_4水合物分解的方法,在低温、高压的纯水体系中,研究了温度为275.15 K,置换压力分别为2.3、2.5、2.8、3.0 MPa时有热激励和无热激励两种置换反应的区别.研究结果表明,有热激励的置换反应,由于提供了额外的热量,使CH_4水合物更易分解,从而加速了置换反应的发生,提高了置换速率.  相似文献   

6.
An experimental investigation on mass transfer of CO2 through the liquid CO2–water interface is reported. At high pressures and low temperatures, water at the liquid CO2–water interface has a quasi-crystalline structure which, locally, may resemble a hydrate crystal element. If the pressure and temperature of the system fall within the hydrate-formation region, then hydrate will form rapidly at the interface; in this case, the quasi-crystal becomes a true crystal. It is found in this study that the interfacial crystallization does not cause a dramatic decrease in the rate of mass transfer, and for both cases with and without an interfacial hydrate layer the overall mass-transfer coefficients are of order of 10−7 m s−1. A mechanism for the interfacial mass-transfer is proposed, which reasonably explains the behavior of the interfacial hydrate layer.  相似文献   

7.
In this study, gas hydrate from CO2/H2 gas mixtures with the addition of tetrahydrofuran (THF) was formed in a semi-batch stirred vessel at various pressures and temperatures to investigate the CO2 separation/recovery properties. This mixture is of interest to CO2 separation and recovery from Integrated Gasification Combine Cycle (IGCC) power plants. During hydrate formation the gas uptake was determined and composition changes in the gas phase were obtained by gas chromatography. The impact of THF on hydrate formation from the CO2/H2 was observed. The addition of THF significantly reduced the equilibrium formation conditions. 1.0 mol% THF was found to be the optimum concentration for CO2 capture based on kinetic experiments. The present study illustrates the concept and provides thermodynamic and kinetic data for the separation/recovery of CO2 (pre-combustion capture) from a fuel gas (CO2/H2) mixture.  相似文献   

8.
The recent increase in atmospheric CO2 concentration makes it necessary to investigate new ways to reduce CO2 emissions. Simultaneously, natural gas hydrate mining technology is developing rapidly. The use of depleted methane hydrate (MH) deposits as potential sites for CO2 storage is relatively safe and economical. This method can alleviate the shortage of hydrate displacement gas with CO2. The purpose of this study was to investigate CO2 hydrate formation characteristics during the seepage process—in reservoirs with excess water—and their effect on CO2 storage. The experimental process can be divided into 5 parts: MH formation, water injection, MH dissociation, CO2 hydrate formation, and CO2 hydrate dissociation. Magnetic resonance imaging was employed to monitor the distribution of liquid water, and the effects of different parameters on the formation and dissociation of CO2 hydrates were analyzed. It was found that a state of initial water saturation can effectively control hydrate saturation in artificial MH reservoirs for hydrate reservoirs with excess gas. In the process of CO2 flow, initial water saturation was not the main controlling factor for CO2 hydrate formation. Increasing the flow pressure and reducing the flow rate were beneficial for CO2 hydrate formation. This study is of great significance for advancing the science of CO2 geological storage in the form of deep‐sea hydrates.  相似文献   

9.
Chen-Ru Zhao  Zhen Zhang 《传热工程》2018,39(16):1437-1449
The in-tube cooling heat transfer and flow characteristics of supercritical pressure CO2 mixed with small amounts of lubricating oil differ from those for pure CO2 due to the entrainment of the lubricating oil as well as the sharp property variations of the supercritical CO2 working fluid. In-tube gas cooling flow and heat transfer models were developed in this study for CO2 with entrained polyol ester type lubricating oil in a CO2 gas cooler at supercritical pressures. A “thermodynamic approach,” which treats the CO2–oil mixture as a homogenous mixture was used with the heat transfer coefficients and frictional pressure drops evaluated based on the thermophysical properties of the CO2–oil mixture. Thermophysical property variation correction terms as a function of the wall temperature and the oil concentration were included in the models. The frictional pressure drop correlation predicts more than 90% of the experimentally measured data within ±10%, while the heat transfer coefficient correlation predicts more than 90% of the experimentally measured data within ±20%.  相似文献   

10.
This paper presents an experimental study on the application of gas hydrate technology to biogas upgrading. Since CH4, CO2 and H2S form hydrates at quite different thermodynamic conditions, the capture of CO2 and H2S by means of gas hydrate crystallization appears to be a viable technological alternative for their removal from biogas streams. Nevertheless, hydrate-based biogas upgrading has been poorly investigated. Works found in literature are mainly at a laboratory scale and concern with thermodynamic and kinetic fundamental studies. The experimental campaign was carried out with an up-scaled apparatus, in which hydrates are produced in a rapid manner, with hydrate formation times of few minutes. Two types of mixtures were used: a CH4/CO2 mixture and a CH4/CO2/H2S mixture. The objective of the investigation is to evaluate the selectivity and the separation efficiency of the process and the role of hydrogen sulphide in the hydrate equilibrium. Results show that H2S can be captured along with CO2 in the same process. The maximum value of the separation factor, defined as the ratio between the number of moles of CO2 and the number of moles of CH4 removed from the gas phase, is 11. In the gas phase, a reduction of CO2 of 24.5% in volume is achievable in 30 min.Energy costs of a real 30-min separation process, carried out in the experimental campaign, are evaluated and compared with those obtained from theoretical calculations. Some aspects for technology improvement are discussed.  相似文献   

11.
The proof of concept for the production of pure pressurized hydrogen from hydrocarbons in combination with the sequestration of a pure stream of carbon dioxide with the reformer steam iron cycle is presented. The iron oxide based oxygen carrier (95% Fe2O3, 5% Al2O3) is reduced with syngas and oxidized with steam at 1023 K. The carbon dioxide separation is achieved via partial reduction of the oxygen carrier from Fe2O3 to Fe3O4 yielding thermodynamically to a product gas only containing CO2 and H2O. By the subsequent condensation of steam, pure CO2 is sequestrated. After each steam oxidation phase, an air oxidation was applied to restore the oxygen carrier to hematite level. Product gas pressures of up to 30.1 bar and hydrogen purities exceeding 99% were achieved via steam oxidations. The main impurities in the product gas are carbon monoxide and carbon dioxide, which originate from solid carbon depositions or from stored carbonaceous molecules inside the pores of the contact mass. The oxygen carrier samples were characterized using elemental analysis, BET surface area measurement, XRD powder diffraction, SEM and light microscopy. The maximum pressure of 95 bar was demonstrated for hydrogen production in the steam oxidation phase after the full oxygen carrier reduction, significantly reducing the energy demand for compressors in mobility applications.  相似文献   

12.
Two sensitivity analyses were performed in an Aspen simulation of fluidized bed gasification for five different gasifying agents such as steam, hydrogen peroxide (H2O2), pure oxygen (O2), carbon dioxide (CO2), and air. In the first sensitivity analysis, the modified equivalence ratio (MER) was varied (0.22-0.36). For the varied modified equivalence ratio (MER), %hydrogen, H2/CO molar ratio, and hydrogen yield were the highest in steam-gasification, but %carbon monoxide, %methane, CO yield, and the lower heating values (LHV) were the highest in CO2-gasification. In the second sensitivity analysis, the freeboard temperature was varied (500-900 °C). With increasing freeboard temperature, %hydrogen and %carbon monoxide increased while %carbon dioxide and %methane decreased for all the gasifying agents. Also, with increasing freeboard temperature, the LHV decreased and the hydrogen yield, CO yield, and the gas production rate increased for all the gasifying agents, but the H2/CO molar ratio increased only in oxygen, air, and CO2-gasification.  相似文献   

13.
Currently, purification is a considerably important technology for biohydrogen (bioH2) production as a renewable energy resource. Adsorption methods are promising techniques for separation of CO2 from the H2/CO2 mixture of bioH2. In this study, the adsorbent is synthesized by impregnating activated carbon (AC) with ionic liquid (IL). The ILs were prepared using choline chloride and zinc chloride at different wt% with the AC, i.e., 0.5 wt%–3 wt%. The physical and chemical properties of the synthesized adsorbents, such as surface morphology, porosity, and structures, were investigated and characterized by using scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Brunauer–Emmett–Teller analysis (BET). To investigate the actual adsorption performances, the effects of different synthesized adsorbent types and feed gas flow rates, i.e., 0.1–1.0 L min−1, were observed. Hence, a commercial gas composed of CO2 and H2 mixture with different compositions, i.e., 40, 50, and 60 vol%, was used as synthetic bioH2 gas. The adsorption capacity of CO2, i.e., adsorption capacity, were determined using single adsorber column (0.6 L) at a temperature of 300 K and pressure of 1 bar. Results showed that adsorption capacity decreased with the increased feed gas flow rate. Moreover, the carbon impregnated with 1 wt% of IL showed the most excellent adsorption capacity at 84.89 mg of CO2/g of adsorbent. The present results are the initial findings generated for the bioH2 separation technology for future high-purity hydrogen production.  相似文献   

14.
Carbon dioxide (CO2) methanation, which is the reduction of carbon dioxide to methane by hydrogen generated from renewable energy, is a promising process for carbon recycling. Towards large-scale implementation, (i) fluidized beds, which have excellent heat transfer, are promising to perform the highly exothermic reaction; and (ii) catalysts suitable for long-term use in fluidized beds are needed. In this study, a novel NiCo bimetal catalyst supported on TiO2-coated SiO2 spheres (NiCo/TiO2@SiO2) was rationally designed and evaluated for CO2 methanation in fluidized bed reactor. The results demonstrate that NiCo/TiO2@SiO2 exhibited high CO2 conversion with CH4 selectivity of greater than 95%. Moreover, the superior performance was sustained for more than 100 h in the fluidized bed reactor, affirming the long-term stability of the catalyst. Comprehensive characterizations were conducted to understand the relationship between structure and performance. This study is expected to be valuable for the potential implementation of the CO2 methanation process in fluidized beds.  相似文献   

15.
Carbon capture and storage (CCS) technologies have been intensively researched and developed to cope with climate change, by reducing atmospheric CO2 concentration. The electrochemical hydrogen pumps with phosphoric acid doped polybenzimidazole (PBI) membrane are evaluated as a process to concentrate CO2 and produce pure H2 from anode outlet gases (H2/CO2 mixture) of molten carbonate fuel cells (MCFC). The PBI-based hydrogen pump without humidification (160 °C) can provide higher hydrogen separation performances than the cells with perfluorosulfonic-acid membranes at a relative humidity of 43% (80 °C), suggesting that the pre-treatment steps can be decreased for PBI-based systems. With the H2/CO2 mixture feed, the current efficiency for the hydrogen separation is very high, but the cell voltage increase, compared to the pure hydrogen operation, mainly due to the larger polarization resistance at electrodes, as confirmed by electrochemical impedance spectroscopy (EIS). The performance evaluation with various Pt loadings indicates that the hydrogen oxidation reaction at anodes is rate determining, and therefore the Pt loading at cathodes can be decreased from 1.1 mg/cm2 to 0.2 mg/cm2 without significant performance decay. The EIS analysis also confirms that the polarization resistances are largely dependent on the Pt loading in anodes.  相似文献   

16.
Methane decomposition was conducted by using K2CO3/carbon hybrids as the catalysts, and hydrogen-rich gas (with hydrogen content of about 87%) and fibrous carbons can be simultaneously obtained together with high and stable methane conversion (up to about 90% at 850 °C). Effects of K2CO3 on methane conversion, hydrogen content and fibrous carbons were investigated by changing the reaction temperature and space velocity. The results indicate that K2CO3 can greatly promote methane activation and conversion, taking responsibility for the continuous formation of CO and a trace of CO2. The oxygen transfer from K2CO3 probably provides convenience for the formation and growth of fibrous carbons.  相似文献   

17.
Evaporation heat transfer characteristics of carbon dioxide (CO2) in a horizontal tube are experimentally investigated. The test tube has an inner diameter of 6.0 mm, a wall thickness of 1.0 mm, and a length of 1.4 m. Experiments are conducted at saturation temperatures of 5 and 10 °C, mass fluxes from 170 to 320 kg/m2 s and heat fluxes from 10 to 20 kW/m2. Partial dryout of CO2 occurs at a lower quality as compared to the conventional refrigerants due to a higher bubble growth within the liquid film and a higher liquid droplet entrainment, resulting a rapid decrease of heat transfer coefficients. The effects of mass flux, heat flux, and evaporating temperature are explained by introducing unique properties of CO2, flow patterns, and dryout phenomenon. In addition, the heat transfer coefficient of CO2 is on average 47% higher than that of R134a at the same operating conditions. The Gungor and Winterton correlation shows poor prediction of the boiling heat transfer coefficient of CO2 at low mass flux, while it yields good estimation at high mass flux.  相似文献   

18.
The thermal decomposition of natural gas forms the basis for the production of hydrogen with reduced CO2 emission. The hydrogen can be used to reduce CO2 from coal-fired power plants to produce methanol which can be used as an efficient automotive fuel. The kinetics of methane decomposition is studied in a one inch diameter tubular reactor at temperatures between 700 and 900 °C and at pressures between 28 and 56 atm. The Arrhenius activation energy is found to be 31.3kcal/mol of CH4. The rate increases with higher pressures and appears to be catalyzed by the presence of carbon particles formed. The conversion increases with temperature and is equilibrium limited. A thermodynamic study indicates that hydrogen produced by methane decomposition while sequestering the carbon produced requires the least amount of process energy with zero CO2 emission. Application to methanol synthesis by reacting the hydrogen with CO2 recovered from coal burning power plant stack gases can significantly reduce CO2 from both the utility and transportation sectors. Published by Elsevier Science Ltd on behalf of the International Association for Hydrogen Energy.  相似文献   

19.
In this paper, a transcritical carbon dioxide heat pump system driven by solar‐owered CO2 Rankine cycle is proposed for simultaneous heating and cooling applications. Based on the first and second laws of thermodynamics, a theoretical analysis on the performance characteristic is carried out for this solar‐powered heat pump cycle using CO2 as working fluid. Further, the effects of the governing parameters on the performance such as coefficient of performance (COP) and the system exergy destruction rate are investigated numerically. With the simulation results, it is found that, the cooling COP for the transcritical CO2 heat pump syatem is somewhat above 0.3 and the heating COP is above 0.9. It is also concluded that, the performance of the combined transcritical CO2 heat pump system can be significantly improved based on the optimized governing parameters, such as solar radiation, solar collector efficient area, the heat transfer area and the inlet water temperature of heat exchange components, and the CO2 flow rate of two sub‐cycles. Where, the cooling capacity, heating capacity, and exergy destruction rate are found to increase with solar radiation, but the COPs of combined system are decreased with it. Furthermore, in terms of improvement in COPs and reduction in system exergy destruction at the same time, it is more effective to employ a large heat transfer area of heat exchange components in the combined heat pump system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The objective of this work is to train an artificial neural network (ANN) to predict the performance of gas cooler in carbon dioxide transcritical air-conditioning system. The designed ANN was trained by performance test data under varying conditions. The deviations between the ANN predicted and measured data are basically less than ±5%. The well-trained ANN is then used to predict the effects of the five input parameters individually. The predicted results show that for the heat transfer and CO2 pressure drop the most effective factor is the inlet air velocity, then come the inlet CO2 pressure and temperature. The inlet mass flow rate can enhance heat transfer with a much larger CO2 pressure drop penalty. The most unfavorable factor is the increase in the inlet air temperature, leading to the deterioration of heat transfer and severely increase in CO2 pressure drop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号