首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both fuel cell and electric vehicles have the potential to play a major role in a transformation towards a low carbon transport system that meets travel demands in a cleaner and more efficient way if hydrogen and electricity was produced in a sustainable manner. Cost reductions are central to this challenge, since these technologies are currently too expensive to compete with conventional vehicles based on fossil fuels. One important mechanism through which technology costs fall is learning-by-doing, the process by which cumulative global deployment leads to cost reduction. This paper develops long-term scenarios by implementing global technology learning endogenously in the TIAM-UCL global energy system model to analyse the role of hydrogen and electricity to decarbonise the transport sector. The analysis uses a multi-cluster global technology learning approach where key components (fuel cell, electric battery and electric drive train), to which learning is applied, are shared across different vehicle technologies such as hybrid, plug-in hybrid, fuel cell and battery operated vehicles in cars, light goods vehicles and buses. The analysis shows that hydrogen and electricity can play a critical role to decarbonise the transport sector. They emerge as complementary transport fuels, rather than as strict competitors, in the short and medium term, with both deployed as fuels in all scenarios. However, in the very long-term when the transport sector has been almost completely decarbonised, technology competition between hydrogen and electricity does arise, in the sense that scenarios using more hydrogen in the transport sector use less electricity and vice versa.  相似文献   

2.
The use of a high temperature fuel cell (HTFC) to continuously and simultaneously polygenerate hydrogen in combination with electricity and heat represents a promising technology as a source of fuel for fuel cell vehicles. Different configurations of polygenerating HTFC, including different designs with internal and external reforming are options to polygenerate electricity, hydrogen and heat. The current study analyzes and compares six different configurations based on solid oxide technology. Efficiency results based upon the Supplemental Input Method demonstrate that internal reforming configurations achieve higher performance than when hydrogen product is produced in an external reformer. The overall efficiency and the efficiency in the generation of each product are used as the basis for comparison.  相似文献   

3.
This paper designs an off-grid charging station for electric and hydrogen vehicles. Both the electric and hydrogen vehicles are charged at the same time. They appear as two electrical and hydrogen load demand on the charging station and the charging station is powered by solar panels. The output power of solar system is separated into two parts. On part of solar power is used to supply the electrical load demand (to charge the electric vehicles) and rest runs water electrolyzer and it will be converted to the hydrogen. The hydrogen is stored and it supplies the hydrogen load demand (to charge the hydrogen-burning vehicles). The uncertainty of parameters (solar energy, consumed power by electrical vehicles, and consumed power by hydrogen vehicles) is included and modeled. The fuel cell is added to the charging station to deal with such uncertainty. The fuel cell runs on hydrogen and produces electrical energy to supply electrical loading under uncertainties. The diesel generator is also added to the charging station as a supplementary generation. The problem is modeled as stochastic optimization programming and minimizes the investment and operational costs of solar and diesel systems. The introduced planning finds optimal rated powers of solar system and diesel generator, operation pattern for diesel generator and fuel cell, and the stored hydrogen. The results confirm that the cost of changing station is covered by investment cost of solar system (95%), operational cost of diesel generator (4.5%), and investment cost of diesel generator (0.5%). The fuel cell and diesel generator supply the load demand when the solar energy is zero. About 97% of solar energy will be converted to hydrogen and stored. The optimal operation of diesel generator reduces the cost approximately 15%.  相似文献   

4.
Hydrogen can compensate for the intermittent nature of some renewable energy sources and encompass the options of supplying renewables to offset the use of fossil fuels. The integrating of hydrogen application into the energy system will change the current energy market. Therefore, this paper deploys the life cycle cost analysis of hydrogen production by polymer electrolyte membrane (PEM) electrolysis and applications for electricity and mobility purposes. The hydrogen production process includes electricity generated from wind turbines, PEM electrolyser, hydrogen compression, storage, and distribution by H2 truck and tube trailer. The hydrogen application process includes PEM fuel cell stacks generating electricity, a H2 refuelling station supplying hydrogen, and range extender fuel cell electric vehicles (RE-FCEVs). The cost analysis is conducted from a demonstration project of green hydrogen on a remote archipelago. The methodology of life cycle cost is employed to conduct the cost of hydrogen production and application. Five scenarios are developed to compare the cost of hydrogen applications with the conventional energy sources considering CO2 emission cost. The comparisons show the cost of using hydrogen for energy purposes is still higher than the cost of using fossil fuels. The largest contributor of the cost is the electricity consumption. In the sensitivity analysis, policy supports such as feed-in tariff (FITs) could bring completive of hydrogen with fossil fuels in current energy market.  相似文献   

5.
The potential benefits of hydrogen as a transportation fuel will not be achieved until hydrogen vehicles capture a substantial market share. However, although hydrogen fuel cell vehicle (FCV) technology has been making rapid progress, the lack of a hydrogen infrastructure remains a major barrier for FCV adoption and commercialization. The high cost of building an extensive hydrogen station network and the foreseeable low utilization in the near term discourages private investment. Based on the past experience of fuel infrastructure development for motor vehicles, innovative, distributed, small-volume hydrogen refueling methods may be required to refuel FCVs in the near term. Among small-volume refueling methods, home and neighborhood tri-generation systems (systems that produce electricity and heat for buildings, as well as hydrogen for vehicles) stand out because the technology is available and has potential to alleviate consumer's fuel availability concerns. In addition, it has features attractive to consumers such as convenience and security to refuel at home or in their neighborhood.The objective of this paper is to provide analytical tools for various stakeholders such as policy makers, manufacturers and consumers, to evaluate the design and the technical, economic, and environmental performances of tri-generation systems for home and neighborhood refueling. An interdisciplinary framework and an engineering/economic model is developed and applied to assess home tri-generation systems for single family residences (case studies on neighborhood systems will be provided in a later paper). Major tasks include modeling yearly system operation, exploring the optimal size of a system, estimating the cost of electricity, heat and hydrogen, and system CO2 emissions, and comparing the results to alternatives. Sensitivity analysis is conducted, and the potential impacts of uncertainties in energy prices, capital cost reduction (or increase), government incentives and environmental cost are evaluated. Policy implications of the modeling results are also explored.  相似文献   

6.
A detailed economics model of hydrogen infrastructure in California has been developed and applied to assess several potential fuel cell vehicle deployment rate and hydrogen station technology scenarios. The model accounts for all of the costs in the hydrogen supply chain and specifically examines a network of 68 planned and existing hydrogen stations in terms of economic viability and dispensed hydrogen cost. Results show that (1) current high-pressure gaseous delivery and liquid delivery station technologies can eventually be profitable with relatively low vehicle deployment rates, and (2) the cost per mile for operating fuel cell vehicles can be lower than equivalent gasoline vehicles in both the near and long term.  相似文献   

7.
In this research study, a real model of a hydrogen fuel cell vehicle is simulated using Simcenter Amesim software. The software used for vehicle simulation enabled dynamic simulation, resulting in more precise simulation. Furthermore, considering that fuel cell degradation is one of the significant challenges confronting fuel cell vehicle manufacturers, we examined the impact of fuel cell degradation on the performance of hydrogen vehicles. According to the findings, a hydrogen vehicle with a degraded fuel cell consumes 14.3% more fuel than a fresh fuel cell hydrogen vehicle. A comprehensive life cycle assessment (LCA) is also performed for the designed hydrogen vehicle. The results of the hydrogen vehicle life cycle assessment are compared with a gasoline vehicle to fully understand the effect of hydrogen vehicles in reducing air emissions. The methods considered for hydrogen production included natural gas reforming, electrolysis, and thermochemical water splitting method. Furthermore, because the source of electricity used for electrolysis has a significant impact on the life cycle emission of a hydrogen vehicle, three different power sources were considered in this assessment. Finally, while a hydrogen vehicle with a degraded fuel cell emits lower carbon dioxide (CO2) than a gasoline vehicle, the emitted CO2 from this vehicle using hydrogen from electrolysis is approximately 25% higher than that of a new hydrogen vehicle.  相似文献   

8.
The ‘Hydrogen Economy’ is a proposed system where hydrogen is produced from carbon dioxide free energy sources and is used as an alternative fuel for transportation. The utilization of hydrogen to power fuel cell vehicles (FCVs) can significantly decrease air pollutants and greenhouse gases emission from the transportation sector. In order to build the future hydrogen economy, there must be a significant development in the hydrogen infrastructure, and huge investments will be needed for the development of hydrogen production, storage, and distribution technologies. This paper focuses on the analysis of hydrogen demand from hydrogen FCVs in Ontario, Canada, and the related cost of hydrogen. Three potential hydrogen demand scenarios over a long period of time were projected to estimate hydrogen FCVs market penetration, and the costs associated with the hydrogen production, storage and distribution were also calculated. A sensitivity analysis was implemented to investigate the uncertainties of some parameters on the design of the future hydrogen infrastructure. It was found that the cost of hydrogen is very sensitive to electricity price, but other factors such as water price, energy efficiency of electrolysis, and plant life have insignificant impact on the total cost of hydrogen produced.  相似文献   

9.
One of the key challenges that still facing the adoption of renewable energy systems is having a powerful energy storage system (ESS) that can store energy at peak production periods and return it back when the demand exceeds the supply. In this paper, we discuss the costs associated with storing excess energy from power grids in the form of hydrogen using proton exchange membrane (PEM) reversible fuel cells (RFC). The PEM-RFC system is designed to have dual functions: (1) to use electricity from the wholesale electricity market when the wholesale price reaches low competitive values, use it to produce hydrogen and then convert it back to electricity when the prices are competitive, and (2) to produce hydrogen at low costs to be used in other applications such as a fuel for fuel cell electric vehicles. The main goal of the model is to minimize the levelized cost of energy storage (LCOS), thus the LCOS is used as the key measure for evaluating this economic point. LCOS in many regions in United States can reach competitive costs, for example lowest LCOS can reach 16.4¢/kWh in Illinois (MISO trading hub) when the threshold wholesale electricity price is set at $25/MWh, and 19.9¢/kWh in Texas (ERCOT trading hub) at threshold price of $20/MWh. Similarly, the levelized cost of hydrogen production shows that hydrogen can be produced at very competitive costs, for example the levelized cost of hydrogen production can reach $2.54/kg-H2 when using electricity from MISO hub. This value is close to the target set by the U.S. Department of Energy.  相似文献   

10.
Considerable attention has been paid to energy security and climate problems caused by road vehicle fleets. Fuel cell vehicles provide a new solution for reducing energy consumption and greenhouse gas emissions, especially those from heavy-duty trucks. Although cost may become the key issue in fuel cell vehicle development, with technological improvements and cleaner pathways for hydrogen production, fuel cell vehicles will exhibit great potential of cost reduction. In accordance with the industrial plan in China, this study introduces five scenarios to evaluate the impact of fuel cell vehicles on the road vehicle fleet greenhouse gas emissions in China. Under the most optimistic scenario, greenhouse gas emissions generated by the whole fleet will decrease by 13.9% compared with the emissions in a scenario with no fuel cell vehicles, and heavy-duty truck greenhouse gas emissions will decrease by nearly one-fifth. Greenhouse gas emissions intensity of hydrogen production will play an essential role when fuel cell vehicles' fuel cycle greenhouse gas emissions are calculated; therefore, hydrogen production pathways will be critical in the future.  相似文献   

11.
Reliable hydrogen fueling stations will be required for the successful commercialization of fuel cell vehicles. An evolving hydrogen fueling station has been in operation in Irvine, California since 2003, with nearly five years of operation in its current form. The usage of the station has increased from just 1000 kg dispensed in 2007 to over 8000 kg dispensed in 2011 due to greater numbers of fuel cell vehicles in the area. The station regularly operates beyond its design capacity of 25 kg/day and enables fuel cell vehicles to exceed future carbon reduction goals today. Current limitations include a cost of hydrogen of $15 per kg, net electrical consumption of 5 kWh per kg dispensed, and a need for faster back-to-back vehicle refueling.  相似文献   

12.
Reliable and affordable future zero emission power, heat and transport systems require efficient and versatile energy storage and distribution systems. This paper answers the question whether for city areas, solar and wind electricity together with fuel cell electric vehicles as energy generators and distributors and hydrogen as energy carrier, can provide a 100% renewable, reliable and cost effective energy system, for power, heat, and transport. A smart city area is designed and dimensioned based on European statistics. Technological and cost data is collected of all system components, using existing technologies and well-documented projections, for a Near Future and Mid Century scenario. An energy balance and cost analysis is performed. The smart city area can be balanced requiring 20% of the car fleet to be fuel cell vehicles in a Mid Century scenario. The system levelized cost in the Mid Century scenario is 0.09 €/kWh for electricity, 2.4 €/kg for hydrogen and specific energy cost for passenger cars is 0.02 €/km. These results compare favorably with other studies describing fully renewable power, heat and transport systems.  相似文献   

13.
The lack of a hydrogen refuelling infrastructure is one of the major obstacles to the introduction of the hydrogen vehicles to the road transport market. To help overcome this hurdle a likely transitional solution is to introduce hydrogen for niche applications such as buses or other types of fleet vehicles for which fuel demand is predictable and localised. This paper analyses the costs of different hydrogen production-delivery pathways, via a case study of buses in London. Scenario analysis over time (2007–2025) is used to investigate potential changes to the cost of hydrogen as a result of technology development, growing demand for hydrogen and changes in energy prices (gas and electricity). It is found that factors related to hydrogen demand have the greatest effect on the unit cost of hydrogen, while for the whole of the analysis period, on-site SMR (steam methane reforming) remains the least-cost production-delivery pathway.  相似文献   

14.
As fuel cell vehicles approach wide-scale deployment, the issue of the quality of hydrogen dispensed to the vehicles has become increasingly important. The various factors that must be considered include the effects of different contaminants on fuel cell performance and durability, the production and purification of hydrogen to meet fuel quality guidelines, and the associated costs of providing hydrogen of that quality to the fuel cell vehicles. In this paper, we describe the development of a model to track the formation and removal of several contaminants over the various steps of hydrogen production by steam-methane reforming (SMR) of natural gas, followed by purification by pressure-swing adsorption (PSA). We have used the model to evaluate the effects of setting varying levels of these contaminants in the product hydrogen on the production/purification efficiency, hydrogen recovery, and the cost of the hydrogen. The model can be used to track contaminants such as CO2, CO, N2, CH4, and H2S in the process. The results indicate that a suggested specification of 0.2 ppm CO would limit the maximum hydrogen recovery from the PSA under typical design and operating conditions. The steam-to-carbon ratio and the process pressure are found to have a significant impact on the process efficiency. Varying the CO specification from 0.1 to 1 ppm is not expected to affect the cost of hydrogen significantly, although the cost of gas analysis to comply with such stringent requirements may add 2–10 cents/kg to the cost of hydrogen.  相似文献   

15.
The data center needs more and more electricity due to the explosive growth of IT servers and it could cause electricity power shortage and huge carbon emission. It is an attractive and promising solution to power the data center with hydrogen energy source. The present work aims to conduct an economic analysis on the hydrogen-powered data center. Configurations of hydrogen-powered and traditional data centers are compared and the differences focus on backup power system, converter/inverter, fuel cell subsystem, carbon emission, hydrogen and electricity consumptions. Economic analysis is conducted to evaluate the feasibility to power the data center with hydrogen energy source. Results show that electricity price increasing rate and hydrogen cost are the main factors to influence economic feasibility of hydrogen-powered data center. When the electricity price keeps constant in the coming two decades, the critical hydrogen price is about 2.8 U.S. dollar per kilogram. If the electricity price could increase 5% annually due to explosive growth of electric vehicles and economy, critical hydrogen price will become 6.4 U.S. dollar per kilogram. Hydrogen sources and transportation determine the hydrogen price together. Hydrogen production cost varies greatly with hydrogen sources and production technologies. Hydrogen transport cost is greatly influenced by distances and H2 consumptions to consumers. It could be summarized that the hydrogen-powered data center is economic if hydrogen could be produced from natural gas or H2-rich industrial waste streams in chemical plant and data center could not be built too far away from hydrogen sources. In addition, large-scale hydrogen-powered data center is more likely to be economic. Solar hydrogen powered data center has entered into a critical stage in the economic feasibility. Solar hydrogen production cost has restrained the H2 utilization in data center power systems now, since it could be competitive only when more strict carbon emission regulation is employed, hydrogen production cost reduces greatly and electricity price is increasing greatly in the future. However, it could be expected solar hydrogen-powered system will be adopted as the power source of data centers in the next few years.  相似文献   

16.
Environmental burdens associated with small scale (40 L hydrogen per minute) production of hydrogen fuel using electrolysis powered by electricity generated from stand-alone wind turbines (30 kW), stand-alone photovoltaic panels (3 kW peak) and UK grid electricity (current and future) has been undertaken. Utilization of fuel within a proton exchange membrane fuel cell passenger vehicle was included and compared to the operation of a petrol vehicle, a fuel cell vehicle fuelled with non-renewable hydrogen, and an electric (battery only) vehicle. The production of renewable hydrogen from wind energy incurs increased climate change burdens compared with extraction and processing of fossil petrol (0.09 mPt compared with 0.07 mPt). However, lower burdens for fossil fuel (1.85 mPt) and climate change (0.26 mPt) are realised by the renewable hydrogen options compared with petrol (4.44 mPt and 0.44 mPt, respectively) following utilization of the fuel due to lower emissions at end use. Utilizing a combination of renewable hydrogen fuelled vehicles and grid powered electric vehicles was considered to be a viable option for meeting UK policy ambitions.  相似文献   

17.
In this article, a robust optimization approach for designing an off-grid solar-powered charging station is proposed to provide electric vehicles (EVs) with electricity and hydrogen vehicles (HV) with hydrogen. A water electrolyzer (WE) is installed in the system to produce and store hydrogen, which is used by the HVs and fuel cell (FC). During the inaccessibility of the photovoltaic (PV) system to feed the EVs, the FC runs on hydrogen to regenerate electricity. Besides, in case the PV system and FC have power shortage to meet the demand of EVs, a diesel generator contributes to electricity production. There are uncertainties involved in the power profile of the PV system as well as the hydrogen and electric demands of the charging station. The novelty of this paper is to integrate robust optimization as a powerful nonstochastic framework into the mixed-integer linear programming (MILP) of the deterministic model to deal with the uncertainties. The technical and economic results prove that the construction of the charging station by considering the highs level of robustness against the negative impacts of uncertainties leads to higher capacities of the PV system and diesel generator. Consequently, the total annualized cost increases from $ 287,256 in deterministic mode to $ 326,757 in robust mode, by 13.75%.  相似文献   

18.
The Balmorel model has been used to calculate the economic optimal energy system configuration for the Scandinavian countries and Germany in 2060 assuming a nearly 100% coverage of the energy demands in the power, heat and transport sector with renewable energy sources. Different assumptions about the future success of fuel cell technologies have been investigated as well as different electricity and heat demand assumptions. The variability of wind power production was handled by varying the hydropower production and the production on CHP plants using biomass, by power transmission, by varying the heat production in heat pumps and electric heat boilers, and by varying the production of hydrogen in electrolysis plants in combination with hydrogen storage. Investment in hydrogen storage capacity corresponded to 1.2% of annual wind power production in the scenarios without a hydrogen demand from the transport sector, and approximately 4% in the scenarios with a hydrogen demand from the transport sector. Even the scenarios without a demand for hydrogen from the transport sector saw investments in hydrogen storage due to the need for flexibility provided by the ability to store hydrogen. The storage capacities of the electricity storages provided by plug-in hybrid electric vehicles were too small to make hydrogen storage superfluous.  相似文献   

19.
《Energy Policy》2005,33(16):2039-2043
As an energy carrier, hydrogen is to be compared to electricity, the only widespread and viable alternative. When hydrogen is used to transmit renewable electricity, only 51% can reach the end user due to losses in electrolysis, hydrogen compression, and the fuel cell. In contrast, conventional electric storage technologies allow between 75% and 85% of the original electricity to be delivered. Even when hydrogen is extracted from gasified coal (with carbon sequestration) or from water cracked in high-temperature nuclear reactors, more of the primary energy reaches the end user if a conventional electric process is used instead. Hydrogen performs no better in mobile applications, where electric vehicles that are far closer to commercialization exceed fuel cell vehicles in efficiency, cost and performance. New, carbon-neutral energy can prevent twice the quantity of GHG's by displacing fossil electricity than it can by powering fuel cell vehicles. The same is true for new, natural gas energy. New energy resources should be used to displace high-GHG electric generation, not to manufacture hydrogen.  相似文献   

20.
As fuel cell technologies are developed, hydrogen‐powered vehicles are receiving more interest. The hydrogen economy, particularly hydrogen‐powered vehicle penetration into the Korean transportation market, is studied in this paper. Vensim, a system dynamic code, was used to simulate the dynamics in the transportation market, assuming various types of vehicles such as gasoline, hybrid electricity, and hydrogen powered. Market share for each vehicle was predicted using the currently available data. The results showed that the hydrogen era will not be as bright as predicted by many people. The main barrier is the fuel cell cost. Thus, in order to expand the fuel cell vehicles (FCVs) market, hydrogen fuel cell cost needs to be dramatically reduced. Hydrogen‐powered FCV cost, including operating and capital costs, should reach $0.16 per kilometer in order to seize 50% of the newly created transportation market. However, if strong policies or subsidies are implemented, the results predicted here will be affected. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号