首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Indoor exposure to fungi has been associated with respiratory symptoms,often attributed to their cell wall component, (1-3)-beta-D-glucan. Performing(1-3)-beta-D-glucan analysis is less time consuming and labor intensive than cultivation or microscopic counting of fungal spores. This has prompted many to use(1-3)-beta-D-glucan as a surrogate for fungal exposure. The aim of this study was to examine which indoor fungal species are major contributors to the (1-3)-beta-D-glucan concentration in field dust samples. We used the quantitative polymerase chain reaction (QPCR) method to analyze 36 indoor fungal species in 297 indoor dust samples. These samples were also simultaneously analyzed for (1-3)-beta-D-glucan concentration using the endpoint chromogenic Limulus Amebocyte lysate assay. Linear regression analysis, followed by factor analysis and structural equation modeling, were utilized in order to identify fungal species that mostly contribute to the (1-3)-beta-D-glucan concentration in field dust samples. The study revealed that Cladosporium and Aspergillus genera, as well as Epicoccum nigrum, Penicillium brevicompactum and Wallemia sebi were the most important contributors to the (1-3)-beta-D-glucan content of these home dust samples. The species that contributed most to the (1-3)-beta-D-glucan concentration were also the most prevalent in indoor environments. However, Alternaria alternata, a common fungal species in indoor dust, did not seem to be a significant source of (1-3)-beta-D-glucan. PRACTICAL IMPLICATIONS: This study revealed that the (1-3)-beta-D-glucan content of different fungal species varies widely. (1-3)-beta-D-glucan inhouse dust from the Greater Cincinnati area may be a good marker for some fungal species of the Cladosporium and Aspergillus genera. In contrast, Alternaria alternata did not contribute much to the (1-3)-beta-D-glucan load. Therefore, (1-3)-beta-D-glucan concentration in field samples as a surrogate for total fungal exposure should be used with caution.  相似文献   

2.
To quantitatively characterize the substances contributing to estrogenic activity in river water, in vitro bioassay using MVLN cells and instrumental analysis using liquid chromatograph–mass spectrometer (LC/MS) or liquid chromatograph–tandem mass spectrometer (LC/MS/MS) were applied to river water extracts taken from various locations in the Tama River, Japan. Tama River water samples were extracted using solid phase extraction and the crude extracts were fractionated by high-performance liquid chromatography (HPLC) into 10 fractions. The sixth fraction contained nonylphenol (NP) and octylphenol (OP) at concentrations in the range of 51.6–147 and 6.9–81.9 ng/L, respectively (concentrations corresponding to the original sample volumes). No estrogenic activity, expressed as 17β-estradiol equivalents (E2-EQB), however, was observed in this fraction (<0.6 ng-E2eq/L). Instrumentally determined estrogenic activity (E2-EQC), which is the concentrations of NP and OP multiplied by their corresponding relative potency, was below the detection limit of the MVLN cell bioassay. Estrogenic activities were detected only in HPLC fraction nos. 7, 8 and 9. Estrone (E1), estradiol (E2) and bisphenol A (BPA) were detected in these fractions. Estriol (E3) and ethynylestradiol (EE2) were not detected (<0.2 ng/L) in these fractions. The calculated E2-EQC for BPA was below the detection limit of bioassay. The E2-EQC for E1 and E2 were on the same order as the estrogenic activity determined by the bioassay (E2-EQB). The ratios of E2-EQC and E2-EQB for E1 and E2 in the three factions collectively (nos. 7–9) were 0.49–0.97 and 0.29–1.12, respectively. Above results indicated that the major causal substances to the estrogenic activity in the Tama River were E1 and E2.  相似文献   

3.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号