首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
Three bacteria, named L2, L3 and L4, were isolated from contaminated cultures of Chlamydomonas reinhardtii strain cc849 in laboratory. The phylogenetic analysis based on 16S rDNA sequences showed that L2, L3 and L4 belonged to genus Stenotrophomonas, Microbacterium and Pseudomonas, respectively. The co-cultivation of isolated L2, L3 and L4 with purified algae, respectively, demonstrated that moderate bacterial concentration did not affect algal growth significantly but improved algal H2 production obviously. The maximal H2 yields were gained by the co-culture of algae with L2 or L4, about 4.0 times higher than that of the single algal culture. Increased respiration rate or O2 consumption was the main reason for the enhancement of H2 yield of the co-cultures.  相似文献   

2.
Hydraulic retention time (HRT) is the main process parameter for biohydrogen production by anaerobic fermentation. This paper investigated the effect of the different HRT on the hydrogen production of the ethanol-type fermentation process in two kinds of CSTR reactors (horizontal continuous stirred-tank reactor and vertical continuous stirred-tank reactor) with molasses as a substrate. Two kinds of CSTR reactors operated with the organic loading rates (OLR) of 12kgCOD/m3•d under the initial HRT of the 8 h condition, and then OLR was adjusted as 6kgCOD/m3•d when the pH drops rapidly. The VCSTR and HCSTR have reached the stable ethanol-type fermentation process within 21 days and 24 days respectively. Among the five HRTs settled in the range of 2–8 h, the maximum hydrogen production rate of 3.7LH2/Ld and 5.1LH2/Ld were investigated respectively in the VCSTR and HCSTR. At that time the COD concentration and HRT were 8000 mg/L and 5 h for VCSTR, while 10000 mg/L and 4 h for HCSTR respectively.Through the analysis on the composition of the liquid fermentation product and biomass under the different HRT condition in the two kinds of CSTR, it can found that the ethanol-type fermentation process in the HCSTR is more stable than VCSTR due to enhancing biomass retention of HCSTR at the short HTR.  相似文献   

3.
4.
Hydrogen production from water with S2− as a reductant under hydrothermal conditions is an effective new method, in which S2− is oxidized into S2O32, SO32 and SO42. However, the reactor wall had great effect on hydrogen production as large amount hydrogen is produced with Hastelloy C-22 reactor while almost no hydrogen generated in SUS 316 reactor. Therefore, the influence of main components of Hastelloy C-22 reactor (Co/W/Ni) and SUS 316 reactor (Fe) on hydrogen production with H2S as the reductant was investigated. The results showed that Fe had negative effect, whereas W, Co and Ni had significant positive effect on improving hydrogen production. These results provided a possible explanation for no hydrogen generated with SUS 316 reactor,and some suggestions for improving hydrogen production. The highest hydrogen production of 199 mL (2 times than the control) was obtained with 4.00 mmol Co, 4.00 mmol W, and 1.00 mmol Ni.  相似文献   

5.
Propane steam reforming (PSR) for the production of H2 was catalyzed by a NiO/K-AlSixOy catalyst synthesized with various Si/Al ratios (Si/Al = 0, 0.3, 0.5, 0.7, and 1.0). The effect of the Si/Al ratio on the acidity of the NiO/K-AlSixOy catalyst for PSR was investigated. NiO/K-AlSixOy gave a higher H2 selectivity and stability during PSR than NiO/K-SiO2 and NiO/K-Al2O3. The NH3-TPD results showed that the acid quantity and strength of NiO/K-AlSixOy changed significantly depending on the Si/Al ratio. With an increased Si/Al ratio, the densities of both weak and strong acid sites increased. The C3H8- and CO-TPD results indicated that desorption amounts increased significantly in all NiO/K-AlSixOy catalysts relative to those of NiO/K-SiO2 and NiO/K-Al2O3, and the adsorption amount increased with the Si/Al ratio. PSR results showed that the NiO/K-AlSixOy catalyst exhibited much better stability than the NiO/K-SiO2 and NiO/K-Al2O3 catalysts. This study confirms the following facts: when the acidity is appropriately adjusted for the catalyst, adsorption of the reaction gas increases, which eventually increases the reaction rate and also inhibits strong sintering between the nickel and the Al2O3 support. As a result, deterioration of the catalyst can be reduced.  相似文献   

6.
Recently, there has been a propensity to postpone dealing with the world's climate concerns until later, resulting in a 1.5 °C rise in temperature over the last century. Therefore, interest in biologically derived, inexhaustible energy sources based on solar energy is growing. Cyanobacteria have the potential to produce clean, renewable fuels in the form of hydrogen (H2) gas, derived from solar energy and water. The current study reports the screening 11 cyanobacterial strains isolated from rice paddies and hotsprings for efficient H2 producers. According to our findings, H2 concentrations in the species ranged from 3.6 to 48.9 μmol mg−1 Chl a h−1. H2 production by isolated species was shown to have a 2% positive influence on oxygen (O2) and carbon dioxide (CO2) concentrations and a 2% negative effect on all nitrogen gas (N2) concentrations. It was discovered that at high CO2 concentrations, photosynthesis is enhanced but H2 production is suppressed. Anabaena variabilis BTA-1047 was found to be the most active H2-producing species, with an H2 production activity of 21.3 μmol mg−1 Chl a h−1. Moreover, a 1% O2: 2% CO2 gas mixture doubled the strain activity of H2 production. The findings of the study called into the question the notion that only an anaerobic environment is required for H2 production by N2-fixing cyanobacterial species and explored whether H2 productivity can be increased by stimulating the micro-anaerobic environment with a carbon source.  相似文献   

7.
In this study, highly active and stable CeO2, ZrO2, and Zr(1-x)Ce(x)O2-supported Co catalysts were prepared using the co-precipitation method for the high-temperature water gas shift reaction to produce hydrogen from waste-derived synthesis gas. The physicochemical properties of the catalysts were investigated by carrying out Brunauer-Emmet-Teller, X-ray diffraction, CO-chemisorption, Raman spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and H2-temperature-programmed reduction measurements. With an increase in the ZrO2 content, the surface area and reducibility of the catalysts increased, while the interaction between Co and the support and the dispersion of Co deteriorated. The Co–Zr0.4Ce0·6O2 and Co–Zr0.6Ce0·4O2 catalysts showed higher oxygen storage capacity than that of the others because of the distortion of the CeO2 structure due to the substitution of Ce4+ by Zr4+. The Co–Zr0.6Ce0·4O2 catalyst with high reducibility and oxygen storage capacity exhibited the best catalytic performance and stability among all the catalysts investigated in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号