首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
格宾加筋土挡墙抗震性能及数值分析   总被引:1,自引:0,他引:1  
基于有限差分程序FLAC3D动力分析模块,建立水平地震作用下格宾加筋土挡墙足尺数值模型,通过抗震模型试验结果验证数值模型的可靠性,分析不同强度地震波作用、不同竖向加筋间距时,格宾加筋土挡墙的水平位移响应、震陷、加速度响应及破坏模式,在此基础上,提出格宾加筋土挡墙抗震设计相关措施与建议。结果表明:在不同峰值加速度作用下,格宾加筋土挡墙没有出现倒塌破坏,在较大的水平位移及沉降发生后仍能继续承载,表现出良好的抗震性能;在地震波频率特性基本不变的情况下增长加速度峰值,墙面加速度放大系数有减小的趋势;格宾加筋土挡墙建造于7度及以下、8度、9度及以上抗震设防区时,格宾网竖向间距分别不宜大于1.0m、0.75m、0.5m;水平地震作用下挡墙潜在破裂面为双线段组合形式;提出格宾加筋土挡墙抗震设计位移控制标准。  相似文献   

2.
The assessment of the internal stability of geosynthetic-reinforced earth retaining walls has historically been investigated in previous studies assuming dry backfills. However, the majority of the failures of these structures are caused by the water presence. The studies including the water presence in the backfill are scarce and often consider saturated backfills. In reality, most soils are unsaturated in nature and the matric suction plays an important role in the wall's stability. This paper investigates the internal seismic stability of geosynthetic-reinforced unsaturated earth retaining walls. The groundwater level can be located at any reinforced backfill depth. Several nonlinear equations relating the unsaturated soil shear strength to the matric suction and different backfill type of soils are considered in this study. The log-spiral failure mechanism generated by the point-to-point method is considered. The upper-bound theorem of the limit analysis is used to evaluate the strength required to maintain the reinforced soil walls stability and the seismic loading are represented by the pseudo-dynamic approach. A parametric study showed that the required reinforcement strength is influenced by several parameters such as the soil friction angle, the horizontal seismic coefficient, the water table level, the matric suction distribution as well as the soil types and the unsaturated soils shear strength.  相似文献   

3.
Pullout resistance is one of the most important factors governing seismic stability of reinforced soil walls. The previous studies on the seismic stability of reinforced soil walls have focused on the axial resistance of the reinforcement against the pullout. However, the kinematics of failure causes the reinforcement to be subjected to the oblique pullout force and bending deformation. Considering the kinematics of failure and bending deformation of the reinforcement, this paper presents a pseudo-static seismic analysis for evaluating the pullout resistance of reinforcements in soil wall subjected to oblique pullout forces. A modified horizontal slice method (HSM) and Pasternak model are used to calculate the required force to maintain the stability of the reinforced soil wall and shear resistance mobilized in the reinforcements, respectively. In addition, this paper studies the effect of various parameters on the pullout resistance of the reinforcements in soil wall subjected to seismic loads. Results of this study are compared with the published data and their differences are analyzed in detail.  相似文献   

4.
加筋土坡动态稳定性拟静力分析   总被引:8,自引:1,他引:7  
 加筋土工结构被广泛采用的原因不仅是其具有良好的静力性能,且也在于出色的动力稳定性能,现有研究较少考虑竖向地震效应对加筋土坡动态稳定性的影响。基于塑性极限分析上限理论,假定不同的破坏面,同时考虑水平和竖向地震影响并结合不同加筋模式,采用拟静力分析方法推导一定加筋强度条件下的边坡临界高度和一定边坡高度条件下的临界加筋强度计算公式,并对所导公式采用序列二次规划法进行了优化计算,数值计算与分析表明:简单静态和动态条件下,该结果与现有研究成果有较好的一致性,可以证明该方法的正确性;水平和竖向地震、岩土材料强度特性、边坡倾斜度均对加筋土坡的动态稳定性有重要影响,特别当边坡较陡,岩土填筑材料质量较差和地震影响强度较大时,忽视竖向地震影响将会导致设计偏于不安全;最后针对工程实际,提出相应的工程建议。  相似文献   

5.
《Soils and Foundations》2019,59(2):241-252
A series of 1-g shaking table tests using variable-amplitude harmonic excitations was performed on 0.8-m-high MSE/soil nail hybrid retaining (MSE/SN) wall models to investigate the seismic behavior of this innovative retaining earth structure. The tests were conducted on physical wall models with strips having a constant length and different nail lengths under loading conditions with different peak accelerations and durations. It was found that the deformation mode and the horizontal displacements of the MSE/SN walls were highly dependent on the length of the nails, such that L/H = 0.7 can be defined as the critical ratio in seismic conditions for MSE/SN walls which have been reinforced with strips having a constant length. Irrespective of the different nail lengths, the pattern of the observed failure mechanism included a moving block which was delineated by a two-part failure plane consisting of a concave curve and an inclined line with a certain point of intersection. Also, a consistent range of the normalized horizontal displacements (Δx/H), about 0.55–1.10%, corresponding to the formation of local shear bands, and a range of Δx/H = 5.0–5.6%, corresponding to the development of active wedge failure, were determined.  相似文献   

6.
地震动土压力水平层分析法   总被引:4,自引:1,他引:4  
Mononobe-Okabe公式是挡土结构设计中关于侧向动土压力计算的常用方法。但Mononobe-Okabe公式的诸多假设使得其公式适用范围受限,而且无法给出地震动土压力合力作用点位置及地震动土压力强度沿墙背分布情况。为弥补以上不足,基于Mononobe-Okabe平面破裂面假设,采用水平层分析法推导地震条件下主动和被动土压力合力及其作用点位置、土压力强度分布公式,并采用图解法得到临界破裂角的显式解答。公式考虑水平和垂直地震加速度、墙背倾角、挡墙墙背与填料黏结力和外摩擦角、均布超载等诸多因素,可以适用于黏性土和无黏性土的主动和被动土压力计算。分析结果表明,地震条件下土压力强度沿墙高为非线性分布,在相应简化假设条件下公式与Mononobe-Okabe公式完全一致。  相似文献   

7.
土工合成材料加筋土挡墙具备优良的抗震性能,但是,国内外现行的加筋土挡墙筋材动拉力计算方法存在地震动参数选用不尽合理的问题,一方面可能带来结构安全隐患,另一方面也造成了工程界的疑虑.基于此,在前期工作的基础上应用非线性动力有限元法分析了高加筋土挡墙在不同地震激励作用下的地震响应,重点讨论了强震作用下筋材拉力的影响因素.分...  相似文献   

8.
Field observations have demonstrated that reinforced soil retaining walls generally have superior seismic performance when compared to traditional gravity retaining walls. However, current design guidelines for reinforced soil retaining walls are typically based on pseudo-static methods of analysis, which involve simplifying assumptions. For instance, the reinforced zone is usually assumed as a rigid body in external stability calculations. As a result, the influences of reinforcement arrangement and properties on the sliding stability and displacement of the wall cannot be accounted for in their design. Additionally, the soil shear strength is assumed to be constant in conventional displacement calculations using the Newmark sliding block method. In this paper, an analysis method is proposed to determine the yield acceleration and lateral displacement of reinforced soil walls that includes soil shear strength mobilization and a two-part wedge planar failure mechanism. The proposed method is validated against the results of laboratory model tests, and influences of factors such as ground acceleration coefficients, and reinforcement and backfill properties on the stability of the wall are examined.  相似文献   

9.
加筋土挡墙拉筋轴向应力分布规律研究   总被引:1,自引:0,他引:1  
基于剪力滞模型基本原理对加筋土挡墙筋土作用机理进行了研究。根据拉筋轴向应力是由拉筋周围土体发生剪切位移而产生,紧邻拉筋周围土体仅受剪应力作用的假定,将加筋体单元中土体分为内、外两层,建立了拉筋轴向受力平衡方程,推导出了加筋土挡墙拉筋轴向应力特解。理论分析表明,加筋土挡墙中拉筋轴向应力沿拉筋长度L呈非线性分布,且在x≤L/2时出现一个峰值;当水平拉筋沿筋长方向出现凹陷或凸起时,在该位置将产生拉力峰值。该研究成果合理解释了加筋土挡墙中拉筋轴向应力出现多个峰值以及越靠近墙底部潜在破裂面位置越接近墙面板的原因。  相似文献   

10.
Formulation and verification for a force equilibrium-based finite displacement method (FFDM) using test results of reinforced model slopes subjected to increasing pseudo-static seismic forces are reported. The FFDM requires, in addition to force equilibrium for a sliced potential failure mass, a hyperbolic shear stress–displacement constitutive law for the backfill soils, a hyperbolic pull-out force–displacement constitutive law for the reinforcement, and a displacement compatibility requirement for adjacent soil slices. As a result, the mobilized reinforcement force is an analytical output, rather than an empiricism-based input as required in conventional limit equilibrium analyses. Analytical results from the FFDM also indicated that a brittle failure is associated with the lightly reinforced failure surface; a ductile failure is associated with the heavily reinforced failure surface, regardless of the extensibility of reinforcement investigated in the present study. Good agreements between the measured and the computed slope displacements and reinforcement forces in response to increases in pseudo-static seismic forces suggest that the FFDM can be used as an analytical tool for evaluating displacements of reinforced slopes subjected to pseudo-static seismic loads.  相似文献   

11.
An efficient and accurate reliability-based design of the geosynthetic-reinforced slopes (GRS) using the pseudo-static and modified pseudo-dynamic framework is proposed in the present study. Deterministic formulation used in the present study is made robust with the help of nonlinear constrained optimization. The collocation based stochastic response surface method (CSRSM) is used to probabilistically analyze the GRS. The critical modes of failure pertaining to the internal and external stability of the GRS are considered in the formation of the performance functions. The horizontal seismic acceleration coefficient (kh), internal friction angle of soil (φ), soil unit weight (γ), shear wave velocity (Vs), and friction angle at the interface between soil and reinforcement (φb) are chosen as the random variables, owing to their high influence on the stability of the GRS. The influence of correlation on the stability of the reinforced slope is illustrated considering the internal and external stability. System reliability analysis considering the internal and external modes of failure is also performed. An illustrative example is presented showing the steps to design a GRS using the proposed formulation. The results confirm the necessity of performing the system reliability analysis to estimate an accurate value of probability of failure of GRS.  相似文献   

12.
In this paper, an analytical method to compute the uplift capacity of an obliquely loaded horizontal strip anchor under both static and seismic conditions is described using the limit equilibrium method. The distribution of the soil reactions on a simple planar failure surface is obtained through the use of Kötter's equation, and the pseudo-dynamic approach is used to obtain the net seismic vertical uplift capacity factor for the unit weight component of the soil (Fγd). The results for the static and seismic vertical uplift capacity factors are determined for various combinations of input parameters, such as the load inclination, the soil friction angle, the embedment ratio, the soil amplification and both horizontal and vertical pseudo-dynamic seismic accelerations. It is observed that the orientation of the load significantly affects the seismic uplift capacity of the horizontal strip anchor. Fγd is seen to decrease with an increase in both horizontal and vertical seismic accelerations and soil amplification, whereas it is seen to increase with an increase in the embedment ratio and the soil friction angle, as expected. The results in terms of the non-dimensional net seismic uplift capacity factor are presented in graphical and tabular forms. The present results are compared and found to be in good agreement with similar results available in literature.  相似文献   

13.
Due to lack of sufficient understanding of the strain-dependent dynamic properties of reinforced mass, existing soil and reinforcement models are not capable of accurately representing the seismic response of reinforced soil structures in numerical and analytical analyses. In the present study, to evaluate the effect of reinforcing technique on strain-dependent dynamic properties of reinforced earth walls, the values of equivalent shear modulus (Ge) and damping ratio (D) were estimated for soil-nailed wall (SNW) and steel-strip reinforced-soil wall (SSW) as a function of shear strain level using 1-g shaking table tests. The results obtained showed that the variation trend of Ge and D versus γ is strongly influenced by the type of reinforcing technique and confining pressure, so that the variation trend of these two parameters versus shear strain can be well expressed as an exponential equation with a high correlation coefficient for each type of reinforced earth wall.  相似文献   

14.
Monitoring was carried out during construction of a cast-in-situ concrete-rigid facing geogrid reinforced soil retaining wall in the Gan (Zhou)-Long (Yan) railway main line of China. The monitoring included the vertical foundation pressure and lateral earth pressure of the reinforced soil wall facing, the tensile strain in the reinforcement and the horizontal deformation of the facing. The vertical foundation pressure of reinforced soil retaining wall is non-linear along the reinforcement length, and the maximum value is at the middle of the reinforcement length, moreover the value reduces gradually at top and bottom. The measured lateral earth pressure within the reinforced soil wall is non-linear along the height and the value is less than the active lateral earth pressure. The distribution of tensile strain in the geogrid reinforcements within the upper portion of the wall is single-peak value, but the distribution of tensile strain in the reinforcements within the lower portion of the wall has double-peak values. The potential failure plane within the upper portion of the wall is similar to “0.3H method”, whereas the potential failure plane within portion of the lower wall is closer to the active Rankine earth pressure theory. The position of the maximum lateral displacement of the wall face during construction is within portion of the lower wall, moreover the position of the maximum lateral displacement of the wall face post-construction is within the portion of the top wall. These monitoring results of the behaviour of the wall can be used as a reference for future study and design of geogrid reinforced soil retaining wall systems.  相似文献   

15.
Construction of building and other civil engineering structures on weak or soft soil is highly risky on geo-technical grounds because such soil is susceptible to differential settlements, poor shear strength and high compressibility. Improvement of load bearing capacity of the soil may be undertaken by a variety of ground improvement techniques like stabilisation of soil, adoption of reinforced earth technique etc. Reinforced earth technique is considered as an effective ground improvement method because of its cost effectiveness, easy adaptability and reproducibility. Therefore, in the present investigation, sisal fibre has been chosen as the reinforcement material and it was randomly included in to the soil at four different percentages of fibre content, i.e. 0.25, 0.5, 0.75 and 1% by weight of raw soil. Four different lengths of fibre, i.e. 10, 15, 20 and 25 mm are also considered as one of the parameters of this study. The main objective of this investigation had been focused on the strength behaviour of the soil reinforced with randomly included sisal fibre. The reinforced soil samples were subjected to compaction and triaxial compression tests. The results of these tests have clearly shown a significant improvement in the failure deviator stress, Shear strength parameters (C and φ) of the studied soil. It can be concluded that sisal fibre can be considered as a good earth reinforcement material.  相似文献   

16.
加筋土挡墙中加筋与土之间的摩擦性质初探   总被引:7,自引:1,他引:7       下载免费PDF全文
本文通过对室内土与加筋之间的剪切试验及现场加筋拉拔试验的分析,得出土与加筋之间的剪切性质可用莫尔-库仑强度包线来表示,并建议在加筋土挡墙设计中考虑土与加筋之间的粘着力作用。本文还指明了,旨在保证加筋土结构设计的安全性、合理性及经济效果方面,用室内试验方法预报的途径。  相似文献   

17.
The level of reinforcement loads in a reinforced soil retaining wall is important to its satisfactory operation under working stress conditions since it basically determines the wall deformation. Consequently, proper estimation of the reinforcement load is a necessary step in the service limit-state design of this type of earth retaining structures. In this study, a force equilibrium approach is proposed to quantify the influence of facing batter on the reinforcement loads of reinforced soil walls under working stress conditions. The approach is then combined with a nonlinear elastic approach for GRS walls without batter to estimate the reinforcement loads neglecting toe restraint. The approximate average mobilized soil strength in the retaining wall is employed in the force equilibrium analysis. The predictions of reinforcement loads by the proposed method were compared to the experimental results from four large-scale tests. It is shown that the proposed semianalytical approach has the capacity to reproduce the reinforcement loads with acceptable accuracy. Some remaining issues are also pinpointed.  相似文献   

18.
应用动力弹塑性有限元方法,研究了双向地震激励下土钉支护边坡动力响应。考虑土体与支护结构相互作用及其协同工作建立三维有限元模型。给出了地震波和阻尼的选取方法。应用了非线性静动力性能的弹塑性模型模拟土体;采用了可以描述土钉在进入塑性阶段强化性质的双线形弹塑性模型模拟土钉;土与结构的相互作用由接触单元模拟。研究内容包括边坡竖向地震响应、水平地震响应,土钉的地震响应,土压力地震响应。结果表明土钉支护边坡延性大,有很好的抗震性能;地震作用后各层土钉轴力都增大;边坡在地震作用下产生永久位移;地震作用下土压力峰值形状与地震作用前的土压力形状相似。这些结论对土钉支护边坡的抗震设计与动力分析有较高的参考价值。  相似文献   

19.
基于大型振动台模型试验,研究水平地震荷载作用下双级土工格栅加筋土挡墙的格栅应变和潜在破裂面规律。用福建砂作为回填砂、混凝土砌块作为挡墙和土工格栅作为筋材构成了试验模型。模型高度1.8 m。输入地震波为卧龙波和EL-Centro波,共9个试验工况。试验结果表明,随着峰值加速度增大,应变值增大,且应变最大值点向土体内部扩展。潜在破裂面随峰值加速度增加逐渐向土体内部扩展。综合已有破裂面计算方法,提出了考虑平台宽度的双级折线型破裂面模型,模型可为双级加筋土挡墙设计计算提供参考。  相似文献   

20.
The advantages of geosynthetic-reinforcing technology to construct new soil structures including; (a) a relatively short construction period; (b) small construction machines necessary; and (c) a higher stability of completed structures, all contributing to a higher cost-effectiveness, are addressed. A number of case successful histories of geosynthetic-reinforced soil retaining walls have been reported in the literature (e.g., [Tatsuoka, F., Koseki, J., Tateyama, M., 1997a. Performance of Earth Reinforcement Structures during the Great Hanshin Earthquake, Special Lecture. In: Proceedings of the International Symposium on Earth Reinforcement, IS Kyushu ‘96, Balkema, vol. 2, pp. 973–1008; Tatsuoka, F., Tateyama, M, Uchimura, T., Koseki, J., 1997b. Geosynthetic-reinforced soil retaining walls as important permanent structures, 1996–1997 Mercer Lecture. Geosynthetics International 4(2), 81–136; Tatsuoka, F., Koseki, J., Tateyama, M., Munaf, Y., Horii, N., 1998. Seismic stability against high seismic loads of geosynthetic-reinforced soil retaining structures, Keynote Lecture. In: Proceedings of the 6th International Conference on Geosynthetics, Atlanta, vol. 1, pp.103–142; Helwany, S.M.B., Wu, J.T.H., Froessl, B., 2003. GRS bridge abutments—an effective means to alleviate bridge approach settlement. Geotextiles and Geomembranes 21(3), 177–196; Lee, K.Z.Z., Wu, J.T.H., 2004. A synthesis of case histories on GRS bridge-supporting structures with flexible facing. Geotextiles and Geomembranes 22(4), 181–204; Yoo, C., Jung, H.-S., 2004. Measured behavior of a geosynthetic-reinforced segmental retaining wall in a tiered configuration. Geotextiles and Geomembranes 22(5), 359–376; Kazimierowicz-Frankowska, K., 2005. A case study of a geosynthetic reinforced wall with wrap-around facing. Geotextiles and Geomembranes 23(1), 107–115; Skinner, G.D., Rowe, R.K., 2005. Design and behaviour of a geosynthetic reinforced retaining wall and bridge abutment on a yielding foundation. Geotextiles and Geomembranes 23(3), 234–260]). Techniques for analyzing the seismic response of reinforced walls and slopes have also been developed (e.g. Nouri, H. Fakher, A., Jones, C.J.F.P., 2006. Development of horizontal slice method for seismic stability analysis of reinforced slopes and walls. Geotextiles and Geomembranes 24(2),175–187). Several typical cases in which embankments having a gentle slope and conventional-type soil retaining walls that were seriously damaged or failed were reconstructed to geosynthetic-reinforced steepened slopes or geosynthetic-reinforced soil retaining walls are also reported in this paper. It has been reported that the reconstruction of damaged or failed conventional soil structures to geosynthetic-reinforced soil structures was highly cost-effective in these cases. Rehabilitation of an old earth-fill dam in Tokyo to increase its seismic stability by constructing a counter-balance fill reinforced with geosynthetic reinforcement is described. Finally, a new technology proposed to stabilize the downstream slope of earth-fill dams against overflowing flood water while ensuring a high seismic stability by protecting the slope with soil bags anchored with geosynthetic reinforcement layers arranged in the slope is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号