首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Pyrolysis is one of the potential routes to harmless energy and useful chemicals from biomass. The pyrolysis of Albizia amara was studied for determining the main characteristics and quantities of liquid products. Particular investigated process variables were temperature from 350 to 550°C, particle size from 0.6 to 1.25 mm, and heating rate from 10 to 30 °C/min. The maximum bio-oil yield of 48.5 wt% at the pyrolysis temperature of 450°C was obtained at the particle size of 1.0 mm and at the heating rate of 30 °C/min. The bio-oil product was analyzed for physical, elemental, and chemical composition using Fourier transform infrared spectroscopy and gas chromatography spectroscopy. The bio-oil contains mostly phenols, alkanes, alkenes, saturated fatty acids and their derivatives. According to the experimental results, the pyrolysis bio-oil can be used as low-grade fuel having heating value of 18.63 MJ/kg and feedstock for chemical industries.  相似文献   

2.
In the present work, fast pyrolysis of Alternanthera philoxeroides was evaluated with a focus to study the chemical and physical characteristics of bio-oil produced and to determine its practicability as a transportation fuel. Pyrolysis of A.philoxeroides was conducted inside a semi batch quartz glass reactor to determine the effect of different operating conditions on the pyrolysis product yield. The thermal pyrolysis of A. philoxeroides were performed at a temperature range from 350 to 550 °C at a constant heating rate of 25 °C/min & under nitrogen atmosphere at a flow rate of 0.1 L/min, which yielded a total 40.10 wt.% of bio-oil at 450 °C. Later, some more sets of experiments were also performed to see the effect on pyrolysis product yield with change in operating conditions like varying heating rates (50 °C/min, 75 °C/min & 100 °C/min) and different flow rates of nitrogen (0.2, 0.3, 0.4 & 0.5 L/min). The yield of bio-oil during different heating rate (25, 50, 75 and 100 °C/min) was found to be more (43.15 wt.%) at a constant heating rate of 50 °C/min with 0.2 L/min N2 gas flow rate and at a fixed pyrolysis temperature of 450 °C. The High Heating Value (HHV) value of bio-oil (8.88 MJ/kg) was very less due to presence of oxygen in the biomass. However, the high heating value of bio-char (20.41 MJ/kg) was more, and has the potential to be used as a solid fuel. The thermal degradation of A. philoxeroides was studied in TGA under inert atmosphere. The characterization of bio-oil was done by elemental analyser (CHNS/O analyser), FT-IR, & GC/MS. The char was characterized by elemental analyser (CHNS/O analysis), SEM, BET and FT-IR techniques. The chemical characterization showed that the bio-oil could be used as a transportation fuel if upgraded or blended with other fuels. The bio-oil can also be used as feedstock for different chemicals. The bio-char obtained from A. philoxeroides can be used for adsorption purposes because of its high surface area.  相似文献   

3.
Spent K-Cups were liquefied into crude bio-oil in a water-ethanol co-solvent mixture and reaction conditions were optimized using response surface methodology (RSM) with a central composite design (CCD). The effects of three independent variables on the yield of crude bio-oil were examined, including the reaction temperature (varied from 255 °C to 350 °C), reaction time (varied from 0 min to 25 min) and solvent/feedstock mass ratio (varied from 2:1 to 12:1). The optimum reaction conditions identified were 276 °C, 3 min, and solvent/feedstock mass ratio of 11:1, giving a mass fraction yield of crude bio-oil of 60.0%. The overall carbon recovery at the optimum conditions was 93% in mass fraction. The effects of catalyst addition (NaOH and H2SO4) on the yield of crude bio-oil were also investigated under the optimized reaction conditions. The results revealed that the presence of NaOH promoted the decomposition of feedstock and significantly enhanced the bio-oil production and liquefaction efficiency, whereas the addition of H2SO4 resulted in a negative impact on the liquefaction process, decreasing the yield of crude bio-oil.  相似文献   

4.
The production of bio-oil by pyrolysis with a high heating rate (500 K s−1) and hydrothermal liquefaction (HTL) of Chlamydomonas reinhardtii was compared. HTL led to bio-oil yield decreasing from 67% mass fraction at 220 °C to 59% mass fraction at 310 °C whereas the bio-oil yield increased from 53% mass fraction at 400 °C to 60% mass fraction at 550 °C for pyrolysis. Energy ratios (energy produced in the form of bio-oil divided by the energy content of the initial microalgae) between 66% at 220 °C and 90% at 310 °C in HTL were obtained whereas it was in the range 73–83% at 400–550 °C for pyrolysis. The Higher Heating Value of the HTL bio-oil was increasing with the temperature while it was constant for pyrolysis. Microalgae cultivation in aqueous phase produced by HTL was also investigated and showed promising results.  相似文献   

5.
《能源学会志》2019,92(5):1537-1547
Hydrothermal liquefaction (HTL) technology was employed to investigate the feasibility of recovering energy from penicillin mycelial waste (PMW) with the help of TG, Py-GC/MS and GC-MS techniques; meanwhile, the nutrients in aqueous phase were also analyzed by spectrophotometry methods. The effects of operating conditions, including hydrothermal temperature (240–300 °C), duration time (20–60 min), total solid ratio (5–15%) and their interactive reactions were concurrently evaluated via response surface methodology. Results demonstrated that operating temperature was found to be the dominant variable affecting the HTL of PMW. Based on the optimal conditions of 298 °C, 60 min and 14.85%, heavy oil derived from PMW was comparable with algal-derived bio-oil as it possessed the highest energy recovery efficiency (42.95%) with a calorie value of 32.84 MJ/kg and a yield of 24.93%. GC/MS results indicated that heavy oil mainly consisted of N-containing compounds (36.73%) and aromatic compounds (31.07%), which might be contributed to the hydrolysis of protein and the aromatization of intermediates, respectively. Besides, more than 65% of nitrogen and 40% of carbon were enriched in aqueous phase, suggesting the possibility of further recycling for algae cultivation, fermentation and anaerobic digestion.  相似文献   

6.
《能源学会志》2020,93(2):581-590
Hydrothermal liquefaction (HTL) of Ulva prolifera macroalgae (UP) was carried out in the presence of three zeolites based catalysts (ZSM-5, Y-Zeolite and Mordenite) with the different weight percentage (10–20 wt%) at 260–300 °C for 15–45 min. A comparison between non-catalytic and catalytic behavior of ZSM-5, Y-Zeolite, and Mordenite in the conversion of Ulva prolifera showed that is affected by properties of zeolites. Maximum bio-oil yield for non-catalytic liquefaction was 16.6 wt% at 280 °C for 15 min. The bio-oil yield increased to 29.3 wt% with ZSM-5 catalyst (15.0 wt%) at 280 °C. The chemical components and functional groups present in the bio-oils are identified by GC-MS, FT-IR, 1H-NMR, and elemental analysis techniques. Higher heating value (HHV) of bio-oil (32.2–34.8 MJ/kg) obtained when catalyst was used compared to the non-catalytic reaction (21.2 MJ/kg). The higher de-oxygenation occurred in the case of ZSM-5 catalytic liquefaction reaction compared to the other catalyst such as Y-zeolite and mordenite. The maximum percentage of the aromatic proton was observed in bio-oil of ZSM-5 (29.7%) catalyzed reaction and minimum (1.4%) was observed in the non-catalyst reaction bio-oil. The use of zeolites catalyst during the liquefaction, the oxygen content in the bio-oil reduced to 17.7%. Aqueous phase analysis exposed that presence of valuables nutrients.  相似文献   

7.
Due to the unstable nature of bio-oil, it becomes mandatory to analyze the changes in physical and chemical properties of the bio-oil during storage to appreciate its chemical instability, for developing stabilization strategies. The present study aims to investigate the oxidative and thermal stability of bio-oil extracted from pyrolyzing Calophyllum inophyllum (CI) deoiled seed cake in a fixed bed reactor at 500 °C under the constant heating rate of 30 °C/min. Each stability analysis method involve an accelerated aging procedure based on standards established by ASTM (D5304 and E2009) and European standard (EN 14112). Fourier Transform Infrared Spectroscopy and Gas Chromatography-Mass Spectrometry were employed to analytically characterize the un-aged and aged bio-oil samples. The results clearly depict that stabilizing Calophyllum inophyllum bio-oil with 10% (w/w) methanol improved its stability than that of the crude sample. Addition of methanol reduced the change in viscosity of bio-oil by 38.55% during accelerated aging process. The oxidation stability index of bio-oil stabilized with methanol was found to be 3.97 h which is in accordance with ASTM D6751. FT-IR and GC-MS results showed an increase in the relative concentration of C-O (carboxylic acids, ethers and esters) and C=O (carbonyl) functional groups in aged bio-oil samples.  相似文献   

8.
Spent coffee grounds (SCG) were liquefied in hot-compressed water to produce crude bio-oil via hydrothermal liquefaction (HTL) in a 100 cm3 stainless-steel autoclave reactor in N2 atmosphere. We investigated the effects of operating parameters such as retention times (5 min, 10 min, 15 min, 20 min and 25 min), reaction temperatures (200 °C, 225 °C, 250 °C, 275 °C and 300 °C), and water/feedstock mass ratios (5:1, 10:1, 15:1 and 20:1) and initial pressure of process gas (2.0 MPa and 0.5 MPa) on the yield and properties of the resulting crude bio-oil. The highest yield of the crude bio-oil (47.3% mass fraction) was obtained at conditions of 275 °C, 10 min retention time and water/feedstock mass ratio of 20:1 with an initial pressure of 2.0 MPa. The elemental analysis of the produced crude bio-oil revealed that the oil product had a higher heating value (HHV) of 31.0 MJ kg−1, much higher than that of the raw material (20.2 MJ kg−1). GC–MS and FT-IR measurements showed that the main volatile compounds in the crude bio-oil were long chain aliphatic acids and esters.  相似文献   

9.
This work investigated the potential of shea butter oil (SBO) as feedstock for synthesis of biodiesel. Due to high free fatty acid (FFA) of SBO used, response surface methodology (RSM) was employed to model and optimize the pretreatment step while its conversion to biodiesel was modeled and optimized using RSM and artificial neural network (ANN). The acid value of the SBO was reduced to 1.19 mg KOH/g with oil/methanol molar ratio of 3.3, H2SO4 of 0.15 v/v, time of 60 min and temperature of 45 °C. Optimum values predicted for the transesterification reaction by RSM were temperature of 90 °C, KOH of 0.6 w/v, oil/methanol molar ratio of 3.5, and time of 30 min with actual shea butter oil biodiesel (SBOB) yield of 99.65% (w/w). ANN combined with generic algorithm gave the optimal condition as temperature of 82 °C, KOH of 0.40 w/v, oil/methanol molar ratio of 2.62 and time of 30 min with actual SBOB yield of 99.94% (w/w). Coefficient of determination (R2) and absolute average deviation (AAD) of the models were 0.9923, 0.83% (RSM) and 0.9991, 0.15% (ANN), which demonstrated that ANN model was more efficient than RSM model. Properties of SBOB produced were within biodiesel standard specifications.  相似文献   

10.
This paper presents a non-stoichiometric and thermodynamic model for steam reforming of Imperata cylindrica bio-oil for biohydrogen production. Thermodynamic analyses of major bio-oil components such as formic acid, propanoic acid, oleic acid, hexadecanoic acid and octanol produced from fast pyrolysis of I. cylindrica was examined. Sensitivity analyses of the operating conditions; temperature (100–1000 °C), pressure (1–10 atm) and steam to fuel ratio (1–10) were determined. The results showed an increase in biohydrogen yield with increasing temperature although the effect of pressure was negligible. Furthermore, increase in steam to fuel ratio favoured biohydrogen production. Maximum yield of 60 ± 10% at 500–810 °C temperature range and steam to fuel ratio 5–9 was obtained for formic acid, propanoic acid and octanol. The heavier components hexadecanoic and oleic acid maximum hydrogen yield are 40% (740 °C and S/F = 9) and 43% (810 °C and S/F = 8) respectively. However, the effect of pressure on biohydrogen yield at the selected reforming temperatures was negligible. Overall, the results of the study demonstrate that the non-stoichiometry and thermodynamic model can successfully predict biohydrogen yield as well as the composition of gas mixtures from the gasification and steam reforming of bio-oil from biomass resources. This will serve as a useful guide for further experimental works and process development.  相似文献   

11.
《能源学会志》2020,93(2):811-821
Bio-oil is a multicomponent mixture of more than 400 types of organic compounds, with high water content. Fractionation of bio-oil may be a more efficient approach for primary separation of bio-oil. In this work, to better understand the effect of fractional condensers on bio-oil yield, physicochemical characteristics, compounds distribution and phenols selection during biomass fast pyrolysis process, a semi-automatic controlled fluidized bed reactor biomass fast pyrolysis system with four-stage condensers was developed. Average temperatures of Condensers 1, 2, 3, 4 were 32.39 °C, 26.74 °C, 24.06 °C and 23.68 °C, respectively. And the bio-oil yields of Condenser 1, 2, 3, and 4 were 26.82%, 7.31%, 1.48% and 9.69%, respectively. Bio-oil collected from Condenser 4 had the lowest water content (9.68 wt%), the lowest acidity (pH = 3.67), and the highest HHV (29.2 MJ/kg). The highest relative contents of compounds collected from Condenser 1, 2, 3 and 4 were 1-(4-hydroxy-3-methoxyphenyl)-2-Propanone (6.95%), trans-Isoeugenol (6.63%), Creosol (5.28%), and trans-Isoeugenol (6.69%), respectively. Fractional condensers affected the compounds distribution, but it has a stronger effect on relative heavy compounds (molar mass > 250) and a weaker effect on relative light compounds (molar mass < 200). Fractional condensers were more conducive to the selection of phenols with relative yield of more than 30%. Phenols, acids and furfurans tended to distribute at higher temperature, while alcohols, ethers and hydrocarbons tended to distribute at relative lower temperature, but the difference was small. The research has provided a reference for the production of bio-oil.  相似文献   

12.
In order to obtain bio-oil from the pomegranate peel which is a by-product of juice production process, the dried pomegranate peel was pyrolyzed at a heating rate of 10°C/min and different temperatures between 400 and 550°C. The highest pyrolytic oil yield of 40.47 wt% was obtained at the final temperature of 550°C. The oil product was characterized by various analysis techniques. The results showed that the oil product mostly contained fine chemicals with oxygen like phenols, furfural, and its derivatives with the carbon number in a range of C3-C10. The oil product had the potential for producing fine chemicals.  相似文献   

13.
In this study, pyrolysis of tomato waste has been performed in fixed bed tubular reactor at 500 °C, both in absence and presence of Cu/Al2O3 catalyst. The influences of heating rate, catalyst preparation method and catalyst loading on bio-oil yields and properties were examined. According to pyrolysis experiments, the highest bio-oil yield was obtained as 30.31% with a heating rate of 100 °C/min, 5% Cu/Al2O3 catalyst loading ratio and co-precipitation method. Results showed that the catalysts have strong positive effect on bio-oil yields. Bio-oil quality obtained from fast catalytic pyrolysis was more favorable than that obtained from non-catalytic and slow catalytic pyrolysis.  相似文献   

14.
This study investigated three different types of catalysts: Ni/HMS-ZSM5, Fe/HMS-ZSM5, and Ce/HMS-ZSM5 in the thermochemical decomposition of green microalgae Spirulina (Arthrospira) plantensis. First, non-catalytic pyrolysis tests were conducted in a temperature ranges of 400–700 °C in a dual-bed pyrolysis reactor. The optimum temperature for maximized liquid yield was determined as 500 °C. Then, the influence of acid washing on bio-products upgrading was studied at the optimum temperature. Compared to the product yields from the pyrolysis of raw spirulina, a higher bio-oil yield (from 34.488 to 37.778 %wt.) and a lower bio-char yield (from 37 to 35 %wt.) were observed for pretreated spirulina, indicating that pretreatment promoted the formation of bio-oil, while it inhibited the formation of biochar from biomass pyrolysis. Finally, catalytic pyrolysis experiments of pretreated-spirulina resulted that Fe as an active phase in catalyst exhibited excellent catalytic activity, toward producing hydrocarbons and the highest hydrogen yield (3.81 mmol/gr spirulina).  相似文献   

15.
The thermodynamic equilibrium of steam reforming of propionic acid (HPAc) as a bio-oil model compound was studied over a wide range of reaction conditions (T = 500–900 °C, P = 1–10 bar and H2O/HPAc = 0–4 mol/mol) using non-stoichiometric equilibrium models. The effect of operating conditions on equilibrium conversion, product composition and coke formation was studied. The equilibrium calculations indicate nearly complete conversion of propionic acid under these conditions. Additionally, carbon and methane formation are unfavorable at high temperatures and high steam to carbon (S/C) ratios. The hydrogen yield versus S/C ratio passes a maximum, the value and position of which depends on temperature. The thermodynamic equilibrium results for HPAc fit favorably with experimental data for real bio-oil steam reforming under same reaction conditions.  相似文献   

16.
In the present study, microalgae Scenedesmus dimorphus was reported for pyrolysis in a fixed-bed reactor to determine the effects of temperature on products yield and the chemical compositions of the liquid and solid products. Experiments were carried out at a temperature range of 300–600 °C with heating rate of 40 °C/min and nitrogen flow rate of 100 ml/min. The yield of bio-oil was found to be maximum (39.6%) at the temperature of 500 °C and was further fractionated into n-hexane, toluene, ethyl acetate and methanol sub-fractions by using liquid column chromatography. Various characteristics of bio-oil and its sub-fractions were determined by 1H NMR, FTIR and GC–MS. The biochar produced as a co-product can be a potential soil amendment with multiple benefits including soil fertility and C-sequestration. The present investigation suggests the suitability of Scenedesmus dimorphus as a potential feedstock for exploitation of energy and biomaterials through pyrolytic conversion.  相似文献   

17.
Hydrodeoxygenation (HDO) is effective for upgrading bio-oil to biofuel. However, the upgrading cost increased due to the high consumption of external hydrogen. In this paper, the hydrogen generated from cheap water using zinc hydrolysis for in situ bio-oil HDO was reported. The effect of different temperatures (200 °C, 250 °C and 300 °C) on bio-oil HDO over Pd/C catalyst was investigated in a batch reactor. The results show that 250 °C yielded biofuel with the highest heating value at 30.17 MJ/kg and the highest hydrocarbons content at 24.09%. Physicochemical properties including heating value, total acid number and chemical compositions of the produced biofuels improved significantly in comparison with that of the original bio-oil.  相似文献   

18.
Rubber seed shell (RSS), comprises of 96.67 wt% organic content and 38.6% crystallinity index, was used for the production of biofuel and value-added chemicals through semi-batch pyrolysis. Thermogravimetric analysis (TGA) of RSS at heating rate of 20 °C/min showed R50 value as 12.72%/min at 376.5 °C. The gaseous product evolved during the decomposition of RSS were analyzed through inline Fourier transform infrared (FT-IR) coupled with TGA instrument. The effects of pyrolysis temperatures (350°C-600 °C) and heating rates (10°C/min–40 °C/min) on the product distribution (liquid, gas and bio-char) were investigated. The maximum yield of liquid product (46.14 wt%) and the carbon-rich bio-char (31.92 wt%) were obtained at 550 °C temperature for heating rate of 30 °C/min. The fuel characteristics of produced bio-char such as higher calorific value (34.5 MJ/kg), higher fixed carbon (79.74 wt%), lower ash (1.87 wt%) and lower moisture content (2.11 wt%) suggested its potential to be used as solid fuel. Value-added organic compounds such as acetic acid, phenolic compounds, creosol, pilocarpine, benzene and levoglucosan were identified in the liquid product using gas chromatography. The pH values of liquid products (2.55–3.0) support the presence of organic acids and phenolic fraction. The presence of various functional groups was also identified using FT-IR spectroscopy. In depth analysis of physico-chemical-thermal properties of RSS and obtained products (liquid and bio-char) suggested that RSS can be considered as a suitable feedstock for the production of value added chemicals including fuel.  相似文献   

19.
Sub/supercritical water liquefication (SCWL) is a water-based thermochemical technology as well as an environmentally friendly treatment by converting wet feedstock into bioenergy. In the present study, a systematic investigation of SCWL of lignite was carried out covering a temperature range between 320 and 440 °C when residence time increased from 5 min to 40 min. The highest bio-oil oil yield of 34.3% with solid residue of 52.7% was obtained at 440 °C for 5 min. Phenol derivatives, carboxylic acids, long chain hydrocarbons, ketones, and naphthalene were the main bio-oil composition through FTIR and GC-MS analysis. Gas yields and their exact compositions were also determined and CO2 was the dominate gas product but the percentage of CH4 became significant at severe SCWL conditions. A conclusion was drawn that fast liquefaction (e.g. 5 min) at relative higher temperature (e.g. 400 °C) which avoid excessive gasification and repolymerization reactions was an optimization strategy for high yield bio-oil production from SCWL of lignite.  相似文献   

20.
Alkyl-phenols and hydroxy- or methoxy-phenols (e.g., catechols, guaiacols and syringols) tend to polymerize into carbonaceous structures, causing clogging of reaction equipment and high coke deposition during bio-oil steam reforming (SR). In this work, removal of these phenolic compounds from raw bio-oil was addressed by accelerated aging and liquid-liquid extraction methods. The solvent-anti-solvent extraction with dichloromethane and water was suitable for obtaining a treated bio-oil appropriate for SR. The effect that phenols extraction has on the stability and regenerability of a NiAl2O4 spinel catalyst was studied by conducting reaction-regeneration cycles. Operating conditions were: 700 °C; S/C, 6; space-time, 0.15 gcatalysth/gbio-oil (reaction step), and in situ coke combustion at 850 °C for 4 h (regeneration step). Fresh, deactivated and regenerated catalyst samples were analyzed by temperature programmed oxidation (TPO), temperature programmed reduction (TPR) and X-ray diffraction (XRD). Stability of the Ni-spinel derived catalyst was significantly improved by removing phenols due to attenuation of both coke deposition and Ni sintering. Regenerability of this catalyst was also slightly improved when reforming the treated bio-oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号