首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper focuses on developing an efficient fuel storage and release method for hydrogen using lithium hydride hydrolysis for use in PEM fuel cells for low power sensor network modules over long durations. Lithium hydride has high hydrogen storage density and achieves up to 95–100% yield. It is shown to extract water vapor freely from the air to generate hydrogen and has a theoretical fuel specific energy of up to 4900 Wh/kg. A critical challenge is how to package lithium hydride to achieve reaction completion. Experiments here show that thick layers of lithium hydride nearly chokes the reaction due to buildup of lithium hydroxide impeding water transport and preventing reaction completion. A model has been developed that describes this lithium hydride hydrolysis behavior. The model accurately predicts the performance of an experimental system than ran for 1400 h and consists of a passive lithium hydride hydrogen generator and PEM fuel cells. These results offer important design guidelines to enable reaction completion and build long-duration lithium hydride hydrogen generators for low power applications.  相似文献   

2.
《Journal of power sources》2002,105(2):250-255
Electronic devices show an ever-increasing power demand and thus, require innovative concepts for power supply. For a wide range of power and energy capacity, membrane fuel cells are an attractive alternative to conventional batteries.The main advantages are
  • •the flexibility with respect to power and capacity achievable with different devices for energy conversion and energy storage,
  • •the long lifetime and long service life,
  • •the good ecological balance,
  • •very low self-discharge.
Therefore, the development of fuel cell systems for portable electronic devices is an attractive, although also a challenging, goal. The fuel for a membrane fuel cell might be hydrogen from a hydride storage system or methanol/water as a liquid alternative. The main differences between the two systems are
  • •the much higher power density for hydrogen fuel cells,
  • •the higher energy density per weight for the liquid fuel,
  • •safety aspects and infrastructure for fuel supply for hydride materials.
For different applications, different system designs are required. High power cells are required for portable computers, low power methanol fuel cells required for mobile phones in hybrid systems with batteries and micro-fuel cells are required, e.g. for hand held PCs in the sub-Watt range. All these technologies are currently under development. Performance data and results of simulations and experimental investigations will be presented.  相似文献   

3.
A portable proton exchange membrane (PEM) fuel cell-battery power system that uses hydrogen as fuel has a higher power density than conventional batteries, and it is one of the most promising environmentally friendly small-scale alternative energy sources. A general methodology of modeling, control and building of a proton exchange membrane fuel cell-battery system is introduced in this study. A set of fuel cell-battery power system models have been developed and implemented in the Simulink environment. This model is able to address the dynamic behaviors of a PEM fuel cell stack, a boost DC/DC converter and a lithium-ion battery. To control the power system and thus achieve proper performance, a set of system controllers, including a PEM fuel cell reactant supply controller and a power management controller, were developed based on the system model. A physical 100 W PEM fuel cell-battery power system with an embedded micro controller was built to validate the simulation results and to demonstrate this new environmentally friendly power source. Experimental results demonstrated that the 100 W PEM fuel cell-battery power system operated automatically with the varying load conditions as a stable power supply. The experimental results followed the basic trend of the simulation results.  相似文献   

4.
This paper deals with the application of lithium ion polymer batteries as electric energy storage systems for hydrogen fuel cell power trains. The experimental study was firstly effected in steady state conditions, to evidence the basic features of these systems in view of their application in the automotive field, in particular charge-discharge experiments were carried at different rates (varying the current between 8 and 100 A). A comparison with conventional lead acid batteries evidenced the superior features of lithium systems in terms of both higher discharge rate capability and minor resistance in charge mode. Dynamic experiments were carried out on the overall power train equipped with PEM fuel cell stack (2 kW) and lithium batteries (47.5 V, 40 Ah) on the European R47 driving cycle. The usage of lithium ion polymer batteries permitted to follow the high dynamic requirement of this cycle in hard hybrid configuration, with a hydrogen consumption reduction of about 6% with respect to the same power train equipped with lead acid batteries.  相似文献   

5.
This study examines the practical prospects and benefits for using interstitial metal hydride hydrogen storage in “unsupported” fuel cell mobile construction equipment and aviation GSE applications. An engineering design and performance study is reported of a fuel cell mobile light tower that incorporates a 5 kW Altergy Systems fuel cell, Grote Trilliant LED lighting and storage of hydrogen in the Ovonic interstitial metal hydride alloy OV679. The metal hydride hydrogen light tower (mhH2LT) system is compared directly to its analog employing high-pressure hydrogen storage (H2LT) and to a comparable diesel-fueled light tower with regard to size, performance, delivered energy density and emissions. Our analysis indicates that the 5 kW proton-exchange-membrane (PEM) fuel cell provides sufficient waste heat to supply the desorption enthalpy needed for the hydride material to release the required hydrogen. Hydrogen refueling of the mhH2LT is possible even without external sources of cooling water by making use of thermal management hardware already installed on the PEM fuel cell. In such “unsupported” cases, refueling times of ∼3–8 h can be achieved, depending on the temperature of the ambient air. Shorter refueling times (∼20 min) are possible if an external source of chilled water is available for metal hydride bed cooling during rapid hydrogen refueling. Overall, the analysis shows that it is technically feasible and in some aspects beneficial to use metal hydride hydrogen storage in portable fuel cell mobile lighting equipment deployed in remote areas. The cost of the metal hydride storage technology needs to be reduced if it is to be commercially viable in the replacement of common construction equipment or mobile generators with fuel cells.  相似文献   

6.
Cross utilization of photovoltaic/wind/battery/fuel cell hybrid-power-system has been demonstrated to power an off-grid mobile living space. This concept shows that different renewable energy sources can be used simultaneously to power off-grid applications together with battery and hydrogen energy storage options. Photovoltaic (PV) and wind energy are used as primary sources and a fuel cell is used as backup power. A total of 2.7 kW energy production (wind and PV panels) along with 1.2 kW fuel cell power is supported with 17.2 kWh battery and 15 kWh hydrogen storage capacities. Supply/demand scenarios are prepared based on wind and solar data for Istanbul. Primary energy sources supply load and charge batteries. When there is energy excess, it is used to electrolyse water for hydrogen production, which in turn can either be used to power fuel cells or burnt as fuel by the hydrogen cooker. Power-to-gas and gas-to-power schemes are effectively utilized and shown in this study. Power demand by the installed equipment is supplied by batteries if no renewable energy is available. If there is high demand beyond battery capacity, fuel cell supplies energy in parallel. Automatic and manual controllable hydraulic systems are designed and installed to increase the photovoltaic efficiency by vertical axis control, to lift up & down wind turbine and to prevent vibrations on vehicle. Automatic control, data acquisition, monitoring, telemetry hardware and software are established. In order to increase public awareness of renewable energy sources and its applications, system has been demonstrated in various exhibitions, conferences, energy forums, universities, governmental and nongovernmental organizations in Turkey, Austria, United Arab Emirates and Romania.  相似文献   

7.
The use of intermittent renewable energy sources for power supply to off-grid electricity consumers depends on energy storage technology to guarantee continuous supply. Potential applications of storage-guaranteed systems range from small installations for remote telecoms, water-pumping and single dwellings, to farms and whole communities for whom grid connection is too expensive or otherwise infeasible, to industrial, military and humanitarian uses. In this paper we explore some of the technical issues surrounding the use of hydrogen storage, in conjunction with a PEM electrolyser and PEM fuel cell, to guarantee electricity supply when the energy source is intermittent, most typically solar photovoltaic. We advocate metal-hydride storage and compare its energy density to that of Li-ion battery storage, concluding that a significantly smaller package is possible with metal-hydride storage. A simple approach to match the output of a photovoltaic array to an electrolyser is presented. The properties required for the metal-hydride storage material to interface the electrolyser to the fuel cell are discussed in detail. It is concluded that relatively conventional Mischmetal-based AB5 alloys are suitable for this application.  相似文献   

8.
The conceptual design of an ammonia fuel processing unit (AFPU), which mainly consists of a heat‐exchanger type reactor and a hollow‐fiber membrane separator, is addressed. Through the theoretical modeling and simulations in gPROMS® environment, it is verified that the cocurrent‐flow annular reactor can carry out 99.5% ammonia conversion without external energy supply and the hollow‐fiber membrane separator produces 99.99% pure hydrogen for a proton exchange membrane (PEM) fuel cell. A combination of a PEM fuel cell power system, AFPU and a specific heat‐exchanger network framework is developed as a stand‐alone (off‐the‐grid) PEM fuel cell power generation system, where the optimal feed conditions are determined by solving a constrained optimization algorithm for maximizing the hydrogen yield of the AFPU. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In small hybrid wind systems, excess wind energy is stored for later use during the deficit power generation. Excess wind energy can be stored as hydrogen in a metal hydride storage bed and reused later to generate power using a fuel cell. This paper deals with the discharge dynamics of the coupled fuel cell and metal hydride storage bed during the power extraction. Thermal coupling of the fuel cell and metal hydride bed is also discussed. The waste heat generated in the fuel cell is removed using a water coolant. The exit fuel cell coolant stream is passed through the metal hydride storage bed to supply the necessary heat required for desorption of hydrogen from the bed. This will also lead to a reduction in the load on the radiator. The discharge dynamics and the thermal management of the coupled system are demonstrated through a system simulation model developed in Matlab/Simulink platform.  相似文献   

10.
Under the background of extensive improvement of renewable resources and demand for reliable emergency power supply, we proposed a hybrid energy storage system including an electric double-layer capacitor bank and a hydrogen system which is composed of fuel cell, electrolyzer, gas tank and metal hydride tank. Through its integration with photovoltaic power sources in a local direct current grid, we expect to obtain both of stable energy source at ordinary times and long-time reliable autonomous emergency power supply when outages happen. A three-day demonstration of the proposed system was performed. The fluctuation compensation performance of the components and the long-time stable power supply obtained by the entire system were evaluated at first, hence the configuration and the management methods of the proposed system were verified in the autonomous emergency power supply application. Meanwhile, the performance of the hybrid use of the gas tank and the metal hydride tank in the system was preliminarily evaluated, for its effectiveness verification on reducing auxiliary power for temperature condition of the metal hydride tank. Moreover, we investigated the distribution characteristics of the power and energy loss in the electric double-layer capacitor, electrolyzer and fuel cell, and their correlation to the efficiency characteristics under different conditions during the operation. The investigation results showed that the continual low-load-ratio state of the electrolyzer and fuel cell led to the low efficiency, the rare high-power occurrence of the electrolyzer and fuel cell led their demanded excessive power capacity. Thus, we proposed a solution method of shifting the electrolyzer and fuel cell's load to the EDLC, when the electrolyzer and fuel cell are in low-load-ratio and excessive high-power state, in order for efficiency increase and facility capacity reduction.  相似文献   

11.
A Li ion polymer battery pack for road vehicles (48 V, 20 Ah) was tested by charging/discharging tests at different current values, in order to evaluate its performance in comparison with a conventional Pb acid battery pack. The comparative analysis was also performed integrating the two storage systems in a hydrogen fuel cell power train for moped applications. The propulsion system comprised a fuel cell generator based on a 2.5 kW polymeric electrolyte membrane (PEM) stack, fuelled with compressed hydrogen, an electric drive of 1.8 kW as nominal power, of the same typology of that installed on commercial electric scooters (brushless electric machine and controlled bidirectional inverter). The power train was characterized making use of a test bench able to simulate the vehicle behaviour and road characteristics on driving cycles with different acceleration/deceleration rates and lengths. The power flows between fuel cell system, electric energy storage system and electric drive during the different cycles were analyzed, evidencing the effect of high battery currents on the vehicle driving range. The use of Li batteries in the fuel cell power train, adopting a range extender configuration, determined a hydrogen consumption lower than the correspondent Pb battery/fuel cell hybrid vehicle, with a major flexibility in the power management.  相似文献   

12.
Hydrogen is an energy carrier which can be used for the storage of intermittent and renewable energy sources. In this paper, the general characteristics of an integrated and automated hydrogen-based auxiliary power unit (APU) are presented. A PEM water electrolyzer (production capacity ranging from zero up to 1 Nm3 H2/h), which can be powered by a panel of photovoltaic cells, is used to produce hydrogen at day hours. Hydrogen is dried and stored in hydride reservoir tanks (the storage capacity of individual reservoirs is 1 Nm3 H2). Then hydrogen is used for the co-generation of heat and electricity at night hours using a PEM fuel cell (1 kW maximum output power). The main electrochemical and technological features of the overall system are presented. This kind of APU can potentially be used as an electric power source for domestic applications, for the production of electricity on remote sites or as a mobile hydrogen refuelling station for transport applications in urban areas.  相似文献   

13.
An electrolyzer/fuel cell energy storage system is a promising alternative to batteries for storing energy from solar electric power systems. Such a system was designed, including a proton-exchange membrane (PEM) electrolyzer, high-pressure hydrogen and oxygen storage, and a PEM fuel cell. The system operates in a closed water loop. A prototype system was constructed, including an experimental PEM electrolyzer and combined gas/water storage tanks. Testing goals included general system feasibility, characterization of the electrolyzer performance (target was sustainable 1.0 A/cm2 at 2.0 V per cell), performance of the electrolyzer as a compressor, and evaluation of the system for direct-coupled use with a PV array. When integrated with a photovoltaic array, this type of system is expected to provide reliable, environmentally benign power to remote installations. If grid-coupled, this system (without PV array) would provide high-quality backup power to critical systems such as telecommunications and medical facilities.  相似文献   

14.
Solid hydrogen storage materials as H2 supply for PEM fuel cells have been attempted over the past decades because of their high efficiencies in H2 storage. However, most investigations were focused on the stage of tank design for the storage materials. The Li-Mg-N-H hydrogen storage system was for the first time integrated into a HT-PEM fuel cell stack for a prototype auxiliary power unit, the maximum working temperature being 200 °C. With a designed output of 1 kW, a few kilograms of storage materials are needed. By using commercially available raw materials, an up-scaled preparation of the storage material was performed using laboratory facilities. Preparation conditions were established with the aid of FTIR, TG-DSC and x-ray diffraction to ensure the desired quality of materials. Prior to power the fuel cell stack, the storage materials need to go through an exothermic metathesis, and severe temperature overshooting is expected, which may cause deterioration in material performance and safety issue. Operation conditions were tested and the temperature overshooting could be effectively prevented under adequate conditions.  相似文献   

15.
The objective of the project is an all-year secure supply of alternating current based on a solar energy island grid consisting of serial components and seasonal energy storage. Photovoltaic modules, inverters, electrolysers, batteries, hydrogen stores and fuel cells form the basis of the independent power supply system. For this, selected load profiles were analysed and evaluated in theory and practice.The analysis is based on the results of the test runs of the system and the simulations, in which the combined hydrogen-battery-system is compared to the battery system.It was revealed that it is sensible to complement an island grid operating on lead batteries for shortterm energy supply with hydrogen as a long-term store. This ensures a year-round supply security based on solar energy and the extension of the life span of the batteries required for hydrogen-based power stores. The systems based purely on batteries can not provide perfect supply security during long periods of low solar radiation since they do not possess energy stores which allow long-term energy storage.Hence a seasonal energy store, such as hydrogen, is required to guarantee reliable power supply for every day of the year.Autonomous power supply systems with long-term energy stores operate independently from the public grid system and can be implemented without elaborate intelligent energy management. For this, however, the costs of the serial components must be reduced and the efficiency of the system must be improved.  相似文献   

16.
Self-contained power supplies and energy storage continue to improve. The criteria that determine their development include efficiency, safety, adaptability, modifiability, and a number of others. In this work, one of the ways to improve the lithium-ion battery by using a new negative electrode is considered. The possibilities of applicability of the improved lithium-ion battery are discussed, its advantages and disadvantages in relation to a hydrogen fuel cell and power sources using hydrogen fuel are considered. The study of the functioning of the new anode, the material of which is a two-layer silicene on a nickel substrate, is carried out at the atomic level. Improvement of the anode characteristics can be achieved by subjecting it to the neutron doping. Li-ion batteries with an improved anode will have higher charging capacity and power, faster charging and improved safety.  相似文献   

17.
This paper describes a technical feasibility study of on-board metal hydride storage systems. The main advantages of these systems would be that of being able to replace counterweights with the weight of the storage system and using the heat emissions of fuel cells for energy, making forklifts a perfect use case. The main challenge is designing a system that supplies the required energy for a sufficiently long period. A first draft was set up and analyzed to provide a forklift based on a fuel cell with hydrogen from HydralloyC5 or FeTiMn. The primary design parameter was the required amount of stored hydrogen, which should provide energy equal to the energy capacity of a battery in an electric vehicle. To account for highly dynamic system requirements, the reactor design was optimized such that the storage was charged in a short time. Additionally, we investigated a system in which a fixed amount of hydrogen energy was required. For this purpose, we used a validated simulation model for the design concepts of metal hydride storage systems. The model includes all relevant terms and parameters to describe processes inside the system's particular reactions and the thermal conduction due to heat exchangers. We introduce an embedded fuel cell model to calculate the demand for hydrogen for a given power level. The resulting calculations provide the required time for charging or a full charge depending on the tank's diameter and, therefore, the necessary number of tanks. We conclude that the desired hydrogen supply times are given for some of the use cases. Accordingly, the simulated results suggest that using a metal hydride system could be highly practical in forklifts.  相似文献   

18.
Two different options for the autonomous power supply of rural or/and remote buildings are examined in this study. The first one involves a PV – diesel based power system, while the second one integrates RES and hydrogen technologies for the development of a self – sustained power system. The main objective is the replacement of the diesel generator and a comparison between these two options for autonomous power supply. Model simulations of the two power systems before and after the replacement, an optimization of the component sizes and a techno – economic analysis have been performed for the purpose of this study. A sensitivity analysis taking into account future cost scenarios for hydrogen technologies is also presented. The results clearly show that the Cost of Energy Produced (COE) from the PV – hydrogen technologies power system is extremely higher than the PV – diesel power system. However, the adopted PV – hydrogen technologies power system reduces to zero the Green – House Gas (GHG) emissions. Moreover, the sensitivity analysis indicates that COE for the latter system can be further reduced by approximately 50% compared to its initial value. This could be achieved by reducing critical COE’s parameters, such as PEM electrolyser and fuel cell capital costs. Hence, a possible reduction on the capital costs of hydrogen energy equipment in combination with emissions reduction mentioned above could make hydrogen – based power systems more competitive.  相似文献   

19.
Small, portable electronic devices need power supplies that have long life, high energy efficiency, high energy density, and can deliver short power bursts. Hybrid power sources that combine a high energy density fuel cell, or an energy scavenging device, with a high power secondary battery are of interest in sensors and wireless devices. However, fuel cells with low self-discharge have low power density and have a poor response to transient loads. A low capacity secondary lithium ion cell can provide short burst power needed in a hybrid fuel cell–battery power supply. This paper describes the polarization, cycling, and self-discharge of commercial lithium ion batteries as they would be used in the small, hybrid power source. The performance of 10 Li-ion variations, including organic electrolytes with LixV2O5 and LixMn2O4 cathodes and LiPON electrolyte with a LiCoO2 cathode was evaluated. Electrochemical characterization shows that the vanadium oxide cathode cells perform better than their manganese oxide counterparts in every category. The vanadium oxide cells also show better cycling performance under shallow discharge conditions than LiPON cells at a given current. However, the LiPON cells show significantly lower energy loss due to polarization and self-discharge losses than the vanadium and manganese cells with organic electrolytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号