共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
支持向量机中引入后验概率的理论和方法研究 总被引:5,自引:1,他引:5
目前支持向量机解决模式识别问题是广大学者研究的热点,样本的后验概率在模式识别中至关重要,但是传统的支持向量机技术不提供后验概率,针对这一问题进行了3个方面的研究:(1)在给出样本点后验概率的基础上,将大规模优化问题分解成最大似然函数和最大分类边界两个规模优化问题;(2)给出了一种新的用后验概率修正最优分离超平面的方法,并且分析了该新方法的合理性;(3)用图像分类的3组实例说明本方法的有效性。 相似文献
7.
基于后验概率的支持向量机 总被引:8,自引:0,他引:8
在支持向量机(support vector machines,SVM)中,训练样本总是具有明确的类别信息,而对于一些不确定性问题并不恰当.受贝叶斯决策规则的启发,利用样本的后验概率来表示这种不确定性.将贝叶斯决策规则与SVM相结合,建立后验概率支持向量机(posteriori probability support vector machine,PPSVM)的体系框架.并详细讨论线性可分性、间隔、最优超平面以及软间隔算法,得到了一个新的优化问题,同时给出了一个支持向量的新定义.实际上, 后验概率支持向量机是建立于统计学习理论(statistical learning theory)基础之上,是标准SVM的扩展.针对数据,还提出了一个确定后验概率的经验性方法.实验也证明了后验概率支持向量机的合理性、有效性. 相似文献
8.
9.
后验概率支持向量机在企业信用评级中的应用 总被引:1,自引:2,他引:1
在支持向量机(Support Vector Machine)的分类问题中,训练样本的分类信息总是确定的,由此得到的分类指示函数也总是对新样本给出确定的分类信息,但是这种情况对一些不确定性问题并不恰当.利用贝叶斯规则,将样本的后验概率与传统支持向量机结合,得到了基于后验概率的支持向量机.在具体的算法上,引入了一个经验性的方法得到样本的后验概率.以某评级机构提供的企业信用评估数据库为研究对象. 相似文献
10.
《计算机应用》2014,(1)
为了更加准确地估计最小音素错误最大后验概率(MPE-MAP)自适应算法中的先验分布中心,使自适应后的声学模型参数更为准确,从而提高系统的识别性能,分别采用最大互信息最大后验概率(MMI-MAP)自适应和基于最大互信息准则与最大似然准则相结合的H-criterion最大后验概率(H-MAP)自适应估计先验分布中心,提出了基于最大互信息最大后验概率先验的最小音素错误最大后验概率(MPE-MMI-MAP)和基于H-criterion最大后验概率先验的最小音素错误最大后验概率(MPE-H-MAP)算法。任务自适应实验结果表明,MPE-MMI-MAP和MPE-H-MAP算法的自适应性能均优于MPE-MAP、MMI-MAP和最大后验概率(MAP)自适应方法,分别比MPE-MAP相对提高3.4%和2.7%。 相似文献
11.
为了提高传统内模控制的鲁棒性和抗干扰能力,采用在线支持向量机回归(Online Support Vector Machine Regression,OSVMR )理论建立系统的正向模型和设计逆模控制器。首先简要介绍了OSVMR的原理和算法,然后将其应用于内模控制问题,并建立了OSVMR模型。其次,在控制过程可逆的条件下设计了OSVMR控制器,最后将该控制方法应用于可逆非线性系统和具未知干扰的温室环境控制问题,仿真结果表明该方法与RBF神经网络IMC相比,具有较简单的模型和较好的控制性能。 相似文献
12.
13.
基于模糊支持向量机的Web挖掘 总被引:1,自引:0,他引:1
刘华富 《计算机工程与应用》2007,43(10):189-190
WEB挖掘是基于文本流的挖掘,由于样本向量的特征往往有几万个,分类算法的运算速度直接影响其实际应用。提出了基于T-S模型的模糊支持向量机分类算法,算法的优势体现在下面几个方面,第一,充分利用了语言信息。第二,由于只需通过局部样本求解二次规划最优解,因此,解决了海量数据的二次规划求最优解的困难。第三,从算法中可看出,在计算机上其算法可实行并行运算,这样提高了算法的运行速度。 相似文献
14.
基于类内超平面的模糊支持向量机 总被引:1,自引:0,他引:1
分析基于样本与类中心距离设计模糊支持向量机隶属度函数的缺点,使用类内超平面代替类中心,提出基于样本到超平面距离的隶属度函数设计方法.该方法降低隶属度函数对样本集几何形状的依赖,提高模糊支持向量机的泛化能力.最后数值实验表明,与传统的支持向量机和现有的3种不同隶属度函数的模糊支持向量机相比,新隶属度函数可达到最好的分类效果而且速度快. 相似文献
15.
赵冠华 《计算机工程与设计》2010,31(8)
为了提高企业财务困境预测的正确率,减少训练模型的样本数和训练时间,在传统支持向量机预测模型的基础上,将Renyi熵和最小二乘支持向量机算法应用于财务困境预测,提出了一种基于Renyi熵的最小二乘支持向量机预测模型.独立推导出了适合财务困境预测这一离散序列的熵以及支持向量机核函数的表达式,同时,给出了这一改进算法的实现步骤.实验结果表明,该算法无论是训练样本的数量还是训练时间,都显著优于传统的最小二乘支持向量机以及标准支持向量机预测模型. 相似文献
16.
17.
18.
建立了一种基于支持向量机的地表水环境质量分类模型,并将其用于浙江省主要市界交界面的地表水环境质量分类。该模型采用径向基核函数,以一对多方式实现多分类。分别以网格搜索、粒子群优化和遗传算法三种优化方法对支持向量机的控制参数进行寻优。实验表明,采用网格搜索法确定支持向量机控制参数可以得到最好的水质分类结果,分类准确率可达到82%,由此证明以支持向量机对水质进行分类是可行的。 相似文献
19.
为了准确预测图书馆借阅量,本文提出基于支持向量机的图书馆借阅量时序预测方法,支持向量机能有效解决非线性、高维、小样本等问题,并采用遗传算法选取合适的支持向量机训练参数,以此增加支持向量机的泛化能力。首先提出了支持向量机预测模型,并进行实例分析,将华北科技学院图书馆流通部1997-2007年度借阅量作为本文的实验数据。实验结果表明支持向量机的图书馆借阅量预测效果优于径向基(Radial Basis Function,RBF)神经网络。 相似文献
20.
基于支持向量机的财务预警模型与应用研究 总被引:7,自引:3,他引:7
提出了利用支持向量机建立财务预警系统、进行财务风险监控的方法,给出了财务评价指标体系及其量化方法,利用支持向量机的分类能力建立了财务预警的模型.最后利用上市公司的财务数据进行训练和评估,证明了基于支持向量机的财务预警模型的可行性和实用性,实验表明支持向量机在小样本情况下具有良好的非线性建模能力和泛化能力. 相似文献