首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
对BT20钛合金及其激光焊接接头的断裂韧性进行了研究.同时分析了合金及激光焊接接头的硬度分布及显微组织.断裂实验表明,除了一个焊接接头紧凑拉伸(CT)试样是脆性启裂外,其它CT试样均在裂纹延性启裂并缓慢扩展后,发生脆性失稳断裂.母材的断裂韧性明显高于焊接接头,轧制方向对母材断裂韧性的影响不明显.焊接热影响区的断裂韧性介于母材和焊缝金属之间.本研究采用的焊后热处理没有改善焊接接头的断裂韧性,还有进一步恶化的趋势.添加活性剂对焊缝金属的断裂韧性没有明显作用,但对延性裂纹扩展长度有所改善.  相似文献   

2.
In steel welds there is often a large variation in fracture toughness and mechanical properties between the weld metal, base material and the various heat affected zone (HAZ) microstructures. The stress field in front of a crack in a weldment can be noticeably affected by the strength mismatch between the weld metal, HAZ and the base material. The crack position relative to the various microstructures will clearly influence the strength mismatch effect. In this paper the influence of crack tip positioning on the fracture performance of strength mismatched steel welds has been studied both experimentally and by FEM analysis. For a mismatched weld with local brittle zones small changes in crack tip location can give considerable changes in the fracture performance of a CTOD specimen. A high degree of strength mismatch increases the effect of crack positioning. Weld metal overmatch increases the stress level in the heat affected zone due to material constraint and thereby reduces the cleavage fracture resistance of the weldment when the coarse grained HAZ (CGHAZ) controls the fracture. The detrimental effect of high overmatch is most pronounced for specimens with notch position at fusion line and a short distance into the brittle CGHAZ. The Weibull stress has been shown to be a suitable fracture parameter in the case where one microstructure clearly controls the cleavage fracture and the calculation of the Weibull stress therefore can be limited to this zone.  相似文献   

3.
In the present work the effects of weld strength undermatch on fracture toughness of heat affected zone (HAZ) have been studied. In the investigation a high strength low alloyed steel (HSLA) with 800 MPa strength class was used, and the undermatched welded joints were made with two weld strength mismatch levels. Three-point bending test specimens with crack depth to specimen width ratio a/W ranging from 0.05 to 0.5 were extracted from the welded joints. The test results show that strength mismatching gives an obvious influence on the fracture toughness of coarse grained HAZ for the undermatched joints. The lower the weld strength mismatching, the higher the fracture toughness of the HAZ. In addition the tendency of fracture toughness change with crack depths is much the same as in previous studies on base metals or weld metals, that is, fracture toughness of the HAZ is increased with reduction of crack depths. From the measured results it shows that the macroscopically mechanical heterogeneity of the welds may have more important influence on the fracture toughness of the HAZ than the meso-heterogeneity in the reheated coarse grained HAZ. Furthermore, numerical verification indicates that the stress triaxiality at crack tip may be the essential reason for the change of fracture toughness of HAZ. It is also shown that the yield strength of HAZ determined by the limit load in the three-point bend test represents the combinative effects of HAZ and its surrounding materials. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The metallurgical changes have been studied in a typical offshore structure material, BS4360 grade 50E steel at various simulated depths (0–185 m) in the dry underwater welding conditions and the weld metal and heat affected zone (HAZ) fracture toughness have been related with the microstructure and micromechanisms of fracture. The results indicated substantial decrease in weld metal CTOD toughness at 185 m welding depth whereas HAZ toughness remained generally unaffected. High toughness of weld metal was found to be associated with greater proportion of the polygonal and the acicular ferrites and negligible proportion of aligned cerbide. High HAZ toughness was due to fine ferrite (6–8 μm) and absence of martensite in the structure.  相似文献   

5.
The electron beam local post-weld heat treatment (EBLPWHT) is a rather new method that provides the advantages of high precision, flexibility and efficiency, energy saving and higher productivity. This paper studies the effect of two post-weld heat treatment processes on the microstructure, mechanical properties and fracture toughness of an electron beam welded joints in 30CrMnSiNi2A steel. EBLPWHT, in a vacuum chamber, immediately after welding and a traditional furnace whole post-weld heat treatment (FWPWHT) were compared. The experimental results show that, after EBLPWHT treatment, the main microstructure of weld was changed from coarse acicular martensite into lath rnartensite, HAZ was changed from lath martensite, bainite into lower bainite, and base metal was changed from ferrite and pearlite into upper bainite and residual austenite. The microstructures of different zones of joints in FWPWHT condition were tempered sorbite. The properties of welded joints can be improved by the EBLPWHT in some extent, and especially largely for the fracture toughness of welded joints. However the value of fracture toughness of base metal is comparatively low, so appropriate heat treatment parameters should be explored in the future.  相似文献   

6.
Electron beam welding (EBW) was applied to 50 mm thick damage-tolerant Ti–6Al–4V (TC4-DT) alloy, and microstructure, microhardness and tensile properties of the defect-free welded joints were examined. The results indicated that the microstructure of the base metal is composed of primary α phases and the lamellar (α + β) bimodal structure. For the EBW joint, martensite basketweave microstructure is formed in fusion zone (FZ). Moreover, the heat affected zone (HAZ) near FZ consists of acicular martensite and a small portion of primary α phase. The HAZ near base metal consists of primary α phase and transformed β containing aciculate α. It is found that the boundary of the two portions of the HAZ was dependent on the β phase transus temperature during weld cooling. Microhardness values for FZ and HAZ are higher than that of base metal, and there are the peak values for the HAZ near the weld metal. The fracture locations of all the EBW tensile specimens are in base metal, and the ultimate tensile strength of the joints may reach about 95% of the base metal. In addition, with the depth increasing along the weld thick direction, the grain size of the FZ decreases and microhardness increases.  相似文献   

7.
In this study, four post-weld heat treatment (PWHT) schedules were selected to enhance the mechanical properties of electron beam welded 300M ultrahigh strength steel joints. The microstructure, mechanical properties and fractography of specimens under the four post-weld heat treatment (PWHT) conditions were investigated and also compared with the base metal (BM) specimens treated by conventional quenching and tempering (QT). Results of macro and microstructures indicate that all of the four PWHT procedures did not eliminate the coarse columnar dendritic grains in weld metal (WM). Whereas, the morphology of the weld centerline and the boundaries of the columnar dendritic grains in WM of weld joint specimens subjected to the PWHT procedure of normalizing at 970 °C for 1 h followed by conventional quenching and tempering (W-N2QT) are indistinct. The width of martensite lath in WM of W-N2QT is narrower than that of specimens subjected to other PWHT procedures. Experimental results indicate that the ductility and toughness of conventional quenched and tempered joints are very low compared with the BM specimens treated by conventional QT. However, the strength and impact toughness of the W-N2QT specimens are superior to those of the BM specimen treated by conventional QT, and the ductility is only slightly inferior to that of the latter.  相似文献   

8.
Q550 high strength steel was welded using gas shielded arc welding and three different welding wires without pre- or post-heat treatments. The paper investigates the influence of welding wire on the microstructure, tensile strength and impact toughness of Q550 steel weld joints. Results showed that the microstructure of the weld metal of joints produced using ER50-6 wire was a mixture of acicular ferrite and grain boundary ferrite including pro-eutectoid ferrite and ferrite side plate. Acicular ferrite was mainly obtained in the weld metal of the joints produced using MK·G60-1 wire. Pro-eutectoid ferrite was present along the boundary of prior austenite. Crack initiation occurred easily at pro-eutectoid ferrite when the joint was subjected to tensile. Tensile strength and impact toughness were promoted with increasing acicular ferrite. Tensile strength of the joint fabricated using MK·G60-1 wire was close to that of base metal. And tensile samples fractured at location of the fusion zone, which had lower toughness and thus became the weak region in the joint. Impact absorbing energy was the highest in the heat affected zone. Fibrous region in fracture surfaces of impact specimens was characterized as transgranular fracture with the mechanism of micro-void coalescence. Acicular ferrite microstructure region corresponded to relatively large dimples while boundary ferrite microstructure corresponded to small dimples.  相似文献   

9.
In the present work, the correlation between microstructural evolution and fracture toughness in 316LN joints welded by Tungsten Inert Gas (TIG) was investigated. The effect of post-weld heat treatment (PWHT) on the microstructure and toughness was characterized. The welding process can significantly change the equiaxed grains of base metal to cells and dendrites, while the PWHT can increase the dendrite size, mitigate the texutre intensity, reduce the dislocation density, and slightly weaken the ultimate tensile strength of the joints. Fracture toughness tests reveal that the strain-induced martensitic transformation at cryogenic temperatures can remarkably deteriorate the fracture toughness. Due to the microstructural evolution during PWHT, the J-integral values at 77 K and 4.2 K decrese to 85% and 54% of those in the as-welded conditions, respectively. The fracture morphology of the as-welded joint shows a characterization of ductile fracture, while the PWHT joint features a mixture of ductile and brittle fracture.  相似文献   

10.
The heat affect zone (HAZ) is in many cases considered to be the most critical part of a weldment. In this paper, the effect of crack size and weld metal mismatch on the HAZ cleavage toughness of wide plate specimens with X-groove has been investigated by the J-Q-M theories and a simple micromechanism for cleavage fracture. Two crack sizes have been studied (a/w = 0.1 and 0.3). In the analyses, the HAZ yield strength is assumed to be higher than the base metal. For each crack size, weld metal local overmatch and local evenmatch with respect to the HAZ are considered. For a given global strain, the results indicate that weld metal overmatch and evenmatch yield the same crack tip loading in terms of J-integral for a/w = 0.3. For a/w = 0.1, overmatch gives lower crack tip loading than evenmatch. For a given crack tip loading, weld metal local evenmatch in general results in less effective crack tip loading than the overmatch. Overmatch is detrimental to HAZ toughness, but this detrimental effect becomes less significant when the crack size decreases.  相似文献   

11.
The present work aims at studying the role of butter layer (BL) in low-cycle fatigue (LCF) behavior of modified 9Cr steel and CrMoV steel dissimilar welded joint. The significant difference of the chemical composition of base metals (BMs) makes it a challenge to achieve sound welded joint. Therefore, buttering was considered to obtain a transition layer between the dissimilar steels. The LCF tests of two kinds of specimens without and with butter layer were performed applying strain-controlled cyclic load with different axial strain amplitudes. The test results indicated that the number of cycles at higher strain amplitudes of welded joint without butter layer was greatly higher than that of the joint with butter layer, while the fatigue lifetime to crack initiation (2Nf) became closer to each other at low and middle strain amplitudes. The failure was in the tempered heat affected zone (HAZ) at the CrMoV side for specimens without BL, while the fracture occurred at the tempered HAZ in the BL for specimens with BL. The microstructure details of BM, BL, HAZ and weld metals (WMs) were revealed by optical microscopy (OM). It was found that the tempered martensite was major microstructure for welded joint and much more carbides were observed in tempered HAZ than other parts due to the repeated tempering. Microhardness test indicated a softest zone existing tempered HAZ of BL and also there was a softer zone in tempered HAZ at the CrMoV side due to repeated tempering during welding and post weld heat treatment (PWHT). And scanning electron microscopy (SEM) was applied to observe the fractography. It was indicated that the fatigue crack initiation occurred from the specimen surface and all specimens were ductile–brittle mixed fractures. It is deemed that the softening behavior in BL caused by twice tempering correspondingly decreased the LCF lifetime at higher strain amplitudes. So suitable welding parameters and heat treatment processes became a key measure to ensure LCF property without losing other properties for welded joint with BL.  相似文献   

12.
采用10 kJ/cm和15 kJ/cm两种焊接热输入对Q1100超高强钢进行熔化极气体保护焊,研究焊接接头的组织性能及局部腐蚀行为。结果表明:两种热输入焊接接头的焊缝组织主要为针状铁素体和少量的粒状贝氏体,粗晶区组织均为板条贝氏体,细晶区组织均为板条贝氏体和粒状贝氏体,临界相变区组织为多边形铁素体、马奥岛和碳化物的混合组织。两种热输入焊接接头中电荷转移电阻均为母材>热影响区>焊缝区,母材耐蚀性最好,热影响区次之,焊缝区耐蚀性最差。在腐蚀过程中,焊缝区作为阳极最先被腐蚀,当腐蚀一定时间后,腐蚀位置发生改变,阳极腐蚀区域转移到母材区,而焊缝区作为阴极得到保护。热输入为10 kJ/cm时,焊接接头具有更好的低温韧性和耐蚀性,其焊缝和热影响区-40℃冲击功分别为46.5 J和30.2 J。  相似文献   

13.
Compact tension specimens were used to measure the initiation fracture toughness and crack growth resistance of pressure vessel steel plates and submerged are weld metal. Plate test specimens were manufactured from four different casts of steel comprising: aluminium killed C-Mn-Mo-Cu and C-Mn steel and two silicon killed C-Mn steels. Weld metal test specimens were extracted from five weld joints of Unionmelt No. 2 weld metal. The welds were of double V butt geometry having either the C-Mn-Mo-Cu steel (three weld joints) or one particular silicon killed C-Mn steel (two weld joints) as parent plate. On the upper shelf, a multiple specimen test technique was used to obtain crack growth data which were analysed by simple linear regression to determine the crack growth resistance lines and to derive the initiation fracture toughness values for each test temperature. These regression lines were highly scattered with respect to temperature and it was very difficult to determine precisely the temperature dependence of the initiation fracture toughness and crack growth resistance. The data were re-analysed, using a multiple linear regression method, to obtain a relationship between the materials' crack growth resistance and toughness, and the principal independent variables (temperature, crack growth, weld joint code and strain ageing).  相似文献   

14.
In this study, two 3.2‐mm thick Ni‐base superalloys, Inconel 718 and 625, have been laser‐beam‐welded by a 6‐kW CO2 laser and their room temperature fracture toughness properties have been investigated. Fracture toughness behaviour of the base metal (BM), fusion zone (FZ) and heat affected zone (HAZ) regions was determined in terms of crack tip opening displacement (CTOD) using compact tension‐type (C(T)) specimens. Laser‐beam‐weld regions showed no significant strength overmatching in both alloys. Ductile crack growth analysis (R‐curve) also showed that both materials exhibited similar behaviour. Compared to the BM there is a slight decrease in fracture toughness of the fusion and the HAZ.  相似文献   

15.
Abstract

Pulsed metal inert gas welding of AZ31B magnesium alloy is carried out, and continuous butt joints of high quality are obtained at optimised parameters. The effects of parameters on weld formation and welding stability are studied. The microstructure, mechanical properties and fracture of weld beads with different filler wires are investigated. The results show that it is a stable drop transition process with optimised parameters, which belongs to globular transfer. The precipitates in fusion zone and heat affected zone (HAZ) are uniform, dispersive and almost granular. The grain size in fusion zone is fine, and the grain size does not grow too large in HAZ compared with the base metal. The ultimate tensile strength of weld beads can be 94% of base metal, and the average elongation is 11%. Dimples and coarse tearing ridges can be observed on the fracture of the weld bead.  相似文献   

16.
Abstract

A series of studies has been carried out to examine the weldability and properties of dissimilar steel joints using martensitic and austenitic stainless steels F6NM (OCr13Ni4Mo) and AISI 347, respectively. This type of joint requires good mechanical properties, corrosion resistance, and a stable magnetic permeability in addition to a good weldability. Weldability tests include weld thermal simulation of the martensitic steel to investigate the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the microstructure and mechanical properties of the heat affected zone (HAZ); implant testing to examine the tendency for cold cracking of martensitic steel; and rigid restraint testing to determine hot crack susceptibility of the multipass dissimilar steel joints. The simulation results indicated that the toughness of the martensitic steel HAZ did not change significantly after the weld thermal cycles. The implant test results indicated that welds produced using nickel based filler show no tendency for cold cracking, whereas welds produced using martensitic or ferritic filler show such a tendency. Based on the weldability tests, a welding procedure (tungsten inert gas welding for root passes with HNiCrMo-2B wire followed by manual metal arc welding using ENiCrFe-3B coated electrode) was developed and a PWHT at 600°C for 2 h was recommended. Joints produced using the developed welding procedure are not susceptible to hot and cold cracking. After PWHT the joints exhibit both satisfactory mechanical properties and stress corrosion cracking resistance.

MST/1955  相似文献   

17.
利用正交试验法,研究了焊接工艺参数对X65管线钢管闪光对焊焊接接头力学性能的影响。正交试验中选择激发闪光阶段烧化量、稳定闪光阶段烧化量、稳定闪光阶段焊接电流、加速闪光阶段闪光速度作为试验因素,焊接接头抗拉强度、塑性和低温冲击韧性作为焊接工艺的评价指标,得到了最优的焊接工艺参数。接头的金相分析表明,焊接的高热输入使接头焊缝区和部分热影响区的晶粒粗化,形成魏氏组织,降低了接头的冲击韧性。刻槽锤断试验表明,灰斑缺陷内部和边缘的密集裂纹导致接头脆性解理断裂。加速闪光阶段优化的闪光速度有利于减少焊缝区内的缺陷并提高接头的力学性能。  相似文献   

18.
Abstract

Post-weld heat treatment (PWHT) of 2219-O aluminium alloy friction stir welding joints was carried out at solution temperatures of 480, 500 and 540°C for 32 min followed by aging at 130°C for 9 h. The effects of PWHT on the microstructure and mechanical properties of the joints were investigated. Experimental results show that PWHT causes coarsening of the grains in the weld, and the coarsening degree increases with increasing solution temperature. The tensile strength of the heat treated joints increases with increasing solution temperature. The maximum tensile strength can reach 260% that of the base material at the solution temperature of 540°C. PWHT has a significant effect on the fracture locations of the joints. When the solution temperature is lower than 500°C, the joints fracture in the base material; when the temperature is higher than 500°C, the joints fracture in the weld. The change of the fracture locations of joints is attributed to the presence of precipitate free zones beside the grain boundaries and coarsening equiaxed grain structures in the weld.  相似文献   

19.
High strength low alloy (HSLA) steels have been widely used in the manufacture of wheel rim on account of the higher strength and larger elongation compared to the traditional low carbon steels. This experimental investigation was aimed to evaluate the microstructure and fracture mechanism of a flash butt welded 380CL steel by comparing the failed wheel rim and the survived wheel rim. The results showed that the continuous banded structure in the HAZ and the serious Widmanstatten ferrite in the weld were the major reasons for the failure of the wheel rim. The micro-hardness of two joints was similar in the overall profile. For the joint of the failed rim, the micro-hardness at the weld was the highest at 254 HV and the lowest micro-hardness value was in the HAZ. The high yield ratio of the failed wheel rim resulted in poor formability in the flaring process. The fracture mechanism of the failed rim was the mixture of ductile and brittle fracture modes. The crack initiation was the fusion zone of the weld having highest micro-hardness, then the cracking propagated along the weld metal to the middle of the wheel rim, a limited deviation was found in the terminal of the crack. The large ferrite grain in the HAZ was the main reason for the brittle–ductile transition.  相似文献   

20.
The aim of the paper is to evaluate the local tensile and fracture toughness properties of the dissimilar metal weld joints between SA508Gr.3 Cl.1 and SA312 Type 304LN pipe. Weld joints have been prepared by manual gas tungsten arc welding (GTAW) process with conventional V‐groove and automatic hot wire gas tungsten arc welding with narrow gap using different filler wires/electrode such as Inconel 82/Inconel 182 and ER309L/ER308L. The tensile and fracture toughness test specimens have been machined from different regions of dissimilar metal weld such as heat affected zones, fusion lines, buttering layer, weld metal and both base metals. Tensile and fracture toughness tests have been carried out as per the ASTM standard E8 and E1820 respectively. Tensile and fracture toughness results of all the regions of dissimilar metal weld joints have been discussed in this paper. Metallurgical and fracture surface examinations have also been reported to substantiate the tensile and fracture toughness results. Need for the local properties for integrity assessment of the dissimilar metal weld joints has also been brought out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号