首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper focuses on the adaptive stabilization problem for a class of high‐order nonlinear systems with time‐varying uncertainties and unknown time‐delays. Time‐varying uncertain parameters are compensated by combining a function gain with traditional adaptive technique, and unknown multiple time‐delays are manipulated by the delicate choice of an appropriate Lyapunov function. With the help of homogeneous domination idea and recursive design, a continuous adaptive state‐feedback controller is designed to guarantee that resulting closed‐loop systems are globally uniformly stable and original system states converge to zero. The effectiveness of the proposed control scheme is illustrated by the stabilization of delayed neural network systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
An output feedback regulation problem is considered for a class of high‐order feedforward nonlinear systems with delay in the input under measurement sensitivity. The key features are that the considered systems have uncertain high‐order feedforward nonlinearity and unknown time‐varying delay in the input. Then, the controller is supposed to be engaged where the output feedback information is distorted by measurement sensitivity. Our proposed controller has two gains—fixed and adaptive gains. The fixed gain is first designed to compensate for measurement sensitivity, and the adaptive gain is next utilized to dominate both unknown input delay and uncertain high‐order feedforward nonlinearity. Simulation examples are given to highlight the advantage of our control scheme.  相似文献   

3.
A periodic adaptive control approach is proposed for a class of nonlinear discrete‐time systems with time‐varying parametric uncertainties which are almost periodic, and the only prior knowledge is the periodicity. The new adaptive controller updates the parameters and the control signal periodically in a pointwise manner over one entire period, in the sequel that achieves a bounded tracking convergence. The result is further extended to scenarios with unknown input gain, higher order dynamics, and tracking. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This article addresses the problem of global output feedback stabilization for a class of time‐varying delay nonlinear systems with polynomial growth rate. The systems under investigation possess two remarkable features: the output is perturbed by an unknown sensitivity function that is not differentiable but continuous, and the nonlinearities are bounded by a polynomial function of the output multiplied by unmeasurable state variables. The new full‐order observer is established by introducing a dynamic gain and filtering unknown nonlinearities and time‐varying delay. With the help of the transformation skill and the reasonable combination of several systems, this article proposes a linear output feedback controller with the dynamic gain and completes the performance analysis based on the construction of two integral Lyapunov functions. Finally, a simulation example is presented to demonstrate the effectiveness of control strategy.  相似文献   

5.
This paper focuses on the adaptive observer design for nonlinear discrete‐time MIMO systems with unknown time‐delay and nonlinear dynamics. The delayed states involved in the system are arguments of a nonlinear function and only the estimated delay is utilized. By constructing an appropriate Lyapunov–Krasovskii function, the delay estimation error is considered in the observer parameter design. The proposed method is then extended to the system with a nonlinear output measurement equation and the delayed dynamics. With the help of a high‐order neural network (HONN), the requirement for a precise system model, the linear‐in‐the‐parameters (LIP) assumption of the delayed states, the Lipschitz or norm‐boundedness assumption of unknown nonlinearities are removed. A novel converse Lyapunov technical lemma is also developed and used to prove the uniform ultimate boundedness of the proposed observer. The effectiveness of the proposed results is verified by simulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we investigate the adaptive state‐feedback stabilization problem for a class of nonlinear systems subject to parametric uncertainties, time‐varying delay, and Markovian jumping actuator failures. First, some fundamental results, including the infinitesimal generator and conditions for the existence and uniqueness of the solution, are established for nonlinear systems w.r.t. Markovian vector and time‐varying delay. Subsequently, corresponding stability criterion is generalized to the considered systems. By employing the backstepping method and the tuning function technique, a systematic adaptive fault‐tolerant control scheme is proposed, which guarantees the boundedness in probability of all the closed‐loop signals. It is noted that no fault detection and diagnostic block are needed, and the control law can be adapted automatically by taking account of the innovative state information. The efficiency of the designed controller is demonstrated by an illustrative example. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
This paper addresses the problem of adaptive neural control for a class of uncertain stochastic pure‐feedback nonlinear systems with time‐varying delays. Major technical difficulties for this class of systems lie in: (1) the unknown control direction embedded in the unknown control gain function; and (2) the unknown system functions with unknown time‐varying delays. Based on a novel combination of the Razumikhin–Nussbaum lemma, the backstepping technique and the NN parameterization, an adaptive neural control scheme, which contains only one adaptive parameter is presented for this class of systems. All closed‐loop signals are shown to be 4‐Moment semi‐globally uniformly ultimately bounded in a compact set, and the tracking error converges to a small neighborhood of the origin. Finally, two simulation examples are given to demonstrate the effectiveness of the proposed control schemes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This paper describes a delay‐range‐dependent local state feedback controller synthesis approach providing estimation of the region of stability for nonlinear time‐delay systems under input saturation. By employing a Lyapunov–Krasovskii functional, properties of nonlinear functions, local sector condition and Jensen's inequality, a sufficient condition is derived for stabilization of nonlinear systems with interval delays varying within a range. Novel solutions to the delay‐range‐dependent and delay‐dependent stabilization problems for linear and nonlinear time‐delay systems, respectively, subject to input saturation are derived as specific scenarios of the proposed control strategy. Also, a delay‐rate‐independent condition for control of nonlinear systems in the presence of input saturation with unknown delay‐derivative bound information is established. And further, a robust state feedback controller synthesis scheme ensuring L2 gain reduction from disturbance to output is devised to address the problem of the stabilization of input‐constrained nonlinear time‐delay systems with varying interval lags. The proposed design conditions can be solved using linear matrix inequality tools in connection with conventional cone complementary linearization algorithms. Simulation results for an unstable nonlinear time‐delay network and a large‐scale chemical reactor under input saturation and varying interval time‐delays are analyzed to demonstrate the effectiveness of the proposed methodology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
This paper is concerned with an adaptive tracking problem for a more general class of switched nonstrict‐feedback nonlinear time‐delay systems in the presence of quantized input. The system structure in a nonstrict‐feedback form, the discrete and distributed time‐varying delays, the sector‐bounded quantized input, and arbitrary switching behavior are involved in the considered systems. In particular, to overcome the difficulties from the distributed time‐varying delays and the sector‐bounded quantized input, the mean‐value theorem for integrals and some special techniques are exploited respectively. Moreover, by combining the Lyapunov‐Razumikhin method, dynamic surface control technique, fuzzy logic systems approximation, and variable separation technique, a quadratic common Lyapunov function is easily built for all subsystems and a common adaptive quantized control scheme containing only 1 adaptive parameter is proposed. It is shown that the tracking error converges to an adjustable neighborhood of the origin whereas all signals of the closed‐loop systems are semiglobally uniformly ultimately bounded. Finally, 2 simulation examples are provided to verify the feasibility and effectiveness of the proposed design methodology.  相似文献   

10.
This paper investigates the problem of adaptive control for a class of stochastic nonlinear time‐delay systems with unknown dead zone. A neural network‐based adaptive control scheme is developed by using the dynamic surface control (DSC) technique and the minimal learning parameters algorithm. The dynamic surface control technique, which can avoid the problem of ‘explosion of complexity’ inherent in the conventional backstepping design procedure, is first extended to the stochastic nonlinear time‐delay system with unknown dead zone. The unknown nonlinearities are approximated by the function approximation technique using the radial basis function neural network. For the purpose of reducing the numbers of parameters, which are updated online for each subsystem in the process of approximating the unknown functions, the minimal learning parameters algorithm is then introduced. Also, the adverse effects of unknown time‐delay are removed by using the appropriate Lyapunov–Krasovskii functionals. In addition, the proposed control scheme is systematically derived without requiring any information on the boundedness of the dead zone parameters and avoids the possible controller singularity problem in the approximation‐based adaptive control schemes with feedback linearization technique. It is shown that the proposed control approach can guarantee that all the signals of the closed‐loop system are bounded in probability, and the tracking errors can be made arbitrary small by choosing the suitable design parameters. Finally, a simulation example is provided to illustrate the performance of the proposed control scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
12.
In this paper, an adaptive fault‐tolerant time‐varying formation control problem for nonlinear multiagent systems with multiple leaders is studied against actuator faults and state‐dependent uncertainties. Simultaneously, the followers form a predefined formation while tracking reference signal determined by the convex combination of the multiple leaders. Based on the neighboring relative information, an adaptive fault‐tolerant formation time‐varying control protocol is constructed to compensate for the influences of actuator faults and model uncertainties. In addition, the updating laws can be adjusted online through the adaptive mechanism, and the proposed control protocol can guarantee that all the signals in the closed‐loop systems are bounded. Lyapunov‐like functions are addressed to prove the stability of multiagent systems. Finally, two examples are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

13.
In this work, the problem of designing a control scheme capable of controlling dynamical systems with unknown time‐varying parameters and disturbances is proposed. In contrast with other works, based on two techniques, ie, adaptive backstepping and sliding modes, an improved method that guarantees the output asymptotic tracking of a smooth reference signal, the stability of the closed‐loop system, and the identification errors' boundedness is developed. By means of sliding mode observers, the adaptation errors' required information is extracted and injected to adaptive laws. The behavior of the proposed control scheme is analyzed by the Lyapunov method. The performance of the proposed system is verified with an academic example.  相似文献   

14.
This paper presents an approximation design for a decentralized adaptive output‐feedback control of large‐scale pure‐feedback nonlinear systems with unknown time‐varying delayed interconnections. The interaction terms are bounded by unknown nonlinear bounding functions including unmeasurable state variables of subsystems. These bounding functions together with the algebraic loop problem of virtual and actual control inputs in the pure‐feedback form make the output‐feedback controller design difficult and challenging. To overcome the design difficulties, the observer‐based dynamic surface memoryless local controller for each subsystem is designed using appropriate Lyapunov‐Krasovskii functionals, the function approximation technique based on neural networks, and the additional first‐order low‐pass filter for the actual control input. It is shown that all signals in the total controlled closed‐loop system are semiglobally uniformly bounded and control errors converge to an adjustable neighborhood of the origin. Finally, simulation examples are provided to illustrate the effectiveness of the proposed decentralized control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Bilateral teleoperation technology has caused wide attentions due to its applications in various remote operation systems. The communication delay becomes one of the main challenging issues in the teleoperation control design. Meanwhile, various nonlinearities, parameter variations, and modeling uncertainties existing in manipulator and environment dynamics need to be considered carefully in order to achieve good control performance. In this paper, a globally stable nonlinear adaptive robust control algorithm is developed for bilateral teleoperation systems to deal with these control issues. Namely, the unknown dynamical parameters of the environmental force are estimated online by the improved least square adaptation law. A novel communication structure is proposed where only the master position signal is transmitted to the slave side for the tracking design, and the online estimators of the environmental parameters are transmitted from the slave to the master to replace the traditional environmental force measurement. Because the estimated environmental parameters are not power signals, the passivity problem of the communication channel and the trade‐off limitation between the transparency performance and robust stability in traditional teleoperation control are essentially avoided. The nonlinear adaptive robust control is subsequently developed to deal with nonlinearities, unknown parameters, and modeling uncertainties of the master, slave, and environmental dynamics, so that the guaranteed transient and steady‐state transparency performance can be achieved. The experiments on two voice‐coil motor‐driven manipulators are carried out, and the comparative results verify that the proposed control algorithm achieves the excellent control performance and the guaranteed robust stability simultaneously under time delays. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents the design of a robust control law for a class of nonlinear dynamical systems subjected to parametric uncertainty and simultaneous unknown, variable state and input delays. A novel controller is developed, which consists of a filtered tracking error and the integral of previous values of control input where the limits of integration are dependent on the known bound of the input delay. Lyapunov‐Krasovskii functionals–based stability analysis guarantees a global uniformly ultimately bounded tracking result where sufficient conditions on controller gains and maximum allowable delay are derived. The performance and robustness of the controller are evaluated by simulation on a two‐link robot manipulator for different combinations of time‐varying state and input delays.  相似文献   

17.
This paper investigates the finite‐time stabilization problem for a class of nonlinear systems with time‐varying delay. Under suitable assumptions, a new state feedback control law is designed by using the adding a power integrator technique. By constructing an appropriate Lyapunov‐Krasovskii functional, it is shown that the corresponding closed‐loop system is finite‐time stable. Two simulation examples are given to verify the effectiveness of the proposed scheme.  相似文献   

18.
In this paper, we develop a sliding mode model reference adaptive control (MRAC) scheme for a class of nonlinear dynamic systems with multiple time‐varying state delays, which is robust with respect to unknown plant delays, to a nonlinear perturbation, and to an external disturbance with unknown bounds. An appropriate Lyapunov–Krasovskii‐type functional is introduced to design the adaptation algorithms, and to prove stability. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, the distributed consensus and tracking protocols are developed for the second‐order time‐varying nonlinear multi‐agent systems under general directed graph. Firstly, the consensus and tracking problems can be converted into a conventional stabilization control problem. Then a state transformation is employed to deal with the time‐varying nonlinearities. By choosing an appropriate time‐varying parameter and coupling strengths, exponential consensus and tracking of second‐order nonlinear multi‐agent systems can be achieved. Finally, a simulation is given to illustrate the effectiveness of the proposed consensus and tracking protocols. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, a robust stabilization problem for a class of linear time‐varying delay systems with disturbances is studied using sliding mode techniques. Both matched and mismatched disturbances, involving time‐varying delay, are considered. The disturbances are nonlinear and have nonlinear bounds which are employed for the control design. A sliding surface is designed and the stability of the corresponding sliding motion is analysed based on the Razumikhin Theorem. Then a static output feedback sliding mode control with time delay is synthesized to drive the system to the sliding surface in finite time. Conservatism is reduced by using features of sliding mode control and systems structure. Simulation results show the effectiveness of the proposed approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号