首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Methyl methacrylate (MMA) functionalized polyethylene additives for improving the properties of lubricating oil has been investigated in which poly(MMA-co-ethylene) were synthesized by using three different polymerization techniques such as miniemulsion, post polymerization and reverse atom transfer radical polymerization with 1.0 molL −1 of MMA and 20 bar of ethylene pressure. The copolymers are block in nature with the composition of 1:3 molar ratios of ethylene:MMA which is independent of polymerization techniques used. 1H NMR analysis confirmed the successful incorporation of the copolymers in the lubricating oil. Thermogravimetric analysis reveals that the addition of poly(MMA-co-ethylene) increases thermal stability of the additive doped lubricating oil by approximately 40°C with a single stage decomposition pattern. Flash point measurements show an increasing flash point values for copolymer doped lubricating oil. From rheological study, the viscosity index of base lubricating oil has found significant increases from 102 to 129 with the addition of poly(MMA-co-ethylene) and the higher molecular weight (MW) of this copolymer provides better thickening efficiency. However, copolymer with higher MW seems to be more susceptible to mechanical degradation resulting in lower shear stability whereas copolymer with lower MW acts as a better pour point depressant.  相似文献   

2.
Liquid crystalline diblock copolymers with different molecular weights and low polydispersities were synthesized by atom transfer radical polymerization of methyl methacrylate (MMA) and 2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene (MPCS) monomers. The block architecture (coil‐conformation of MMA segment and rigid‐rod of MPCS segment) of the copolymer was experimentally confirmed by a combination of 1H nuclear magnetic resonance and gel permeation chromatograph techniques. The liquid crystalline behaviour of the copolymer was studied using differential scanning calorimetry and polarized optical microscope. It was found that the liquid crystalline behaviour was dependent on the number average molecular weight of the rigid segment. Only those copolymers with Mn(GPC) of the rigid block above 9200 g mol?1 could form liquid crystalline phases higher than the glass transition temperature of the rigid block. The random copolymers MPCS‐co‐MMA were also synthesized by conventional free radical polymerization. The molar content of MPCS in MPCS‐co‐MMA had to be higher than 71% to maintain liquid crystalline behaviour. © 2003 Society of Chemical Industry  相似文献   

3.
Defined diblock and triblock copolymers composed of methyl methacrylate‐co‐glycidyl methacrylate block and 3‐{3,5,7,9,11,13,15‐hepta(2‐methylpropyl)‐pentacyclo[9.5.1.13,9.15,15.17,13]‐octasiloxan‐1‐yl}propyl methacrylate block(s), i.e., P(MMA‐co‐GMA)‐b‐PiBuPOSSMA and PiBuPOSSMA‐b‐P(MMA‐co‐GMA)‐b‐PiBuPOSSMA, were synthesized by atom transfer radical polymerization (ATRP). First, monofunctional and bifunctional P(MMA‐co‐GMA) copolymers were synthesized by ATRP. Subsequently, these copolymers were successfully used as macroinitiators for ATRP of POSS‐containing methacrylate monomer. The process showed high initiation efficiency of macroinitiators and led to products with low dispersity. The synthesized block copolymers were characterized by size exclusion chromatography, 1H‐NMR spectroscopy and their glass transition temperatures were determined by differential scanning calorimetry. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
The concentration of the cosurfactant 1‐butanol (BuOH) determined the polymer weight and size for a series of poly(styrene‐co‐methyl methacrylate)s (P(St‐co‐MMA)) synthesized by the free‐radical (o/w) microemulsion technique. A factorial design established the levels of the experimental conditions for the polymerization i.e., concentration of the surfactant, sodium dodecyl sulfate (SDS); concentration of the cosurfactant, BuOH; temperature and ratio of the styrene (St) to methyl methacrylate (MMA). An increase in the weight‐average molecular weight (Mw) and number‐average molecular weight (Mn) was observed in the P(St‐co‐MMA) series with an increase in BuOH concentration from 1 to 5 wt %. These effects could arise from the micellar aggregation induced by interfacial BuOH. The unique micellar conditions could be exploited to synthesize copolymers of varying molecular weight and size. Additionally, the composition of the copolymers was virtually templates of the feed composition. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

5.
In the past work, the shear resistance of pure poly(n‐butyl acrylate) was low, even incorporation of inorganic filler, silica in the composition. It is well‐known that the copolymerization of n‐butyl acrylate (BA) with methyl methacrylate (MMA) will increase the glass transition temperature, and enhance the shear resistance of acrylic polymers. In the current work, the preparation of a series of acrylic water‐borne pressure‐sensitive adhesives (PSAs) with the controlled composition and structure for the copolymerization of BA and acrylic acid (AA) with different MMA contents, poly(BA‐co‐MMA‐co‐AA) was reported and its effects on adhesive properties of the latices were investigated. The latices of poly(BA‐co‐MMA‐co‐AA) were prepared at a solid content of 50% by two‐stage sequential emulsion polymerization, and this process consisted of a batch seed stage giving a particle diameter of 111 nm, which was then grown by the semicontinuous addition of monomers to final diameter of 303 nm. Dynamic light scattering (DLS) was used to monitor the particle diameters and proved that no new nucleation occurred during the growth stage. Copolymerization of BA with MMA raised the glass transition temperature (Tg) of the soft acrylic polymers, and had the effect of improving shear resistance, while the loop tack and peel adhesion kept relatively high. The relationship between pressure‐sensitive properties and molecular parameters, such as gel content and molecular weight, was evaluated. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Three new hydroxypropyl methacrylates having three different aryl rings were synthesized by addition of 2,3-epoxypropyl aromatic hydrocarbon to methacrylic acid. The monomers prepared are 3-phenyl-2-hydroxypropyl methacrylate, 3-tolyl-2-hydroxypropyl methacrylate, (THPMA), and 3-naphtyl-2-hydroxypropyl methacrylate. The homopolymers of these monomers and two different copolymers, [poly(THPMA-co-BMA)], were obtained from polymerization at 60°C in 1,4-dioxane solution using AIBN as initiator. All the monomers and the polymers were characterized by FT-IR and 1H and 13C NMR techniques. Solubility parameters of the polymers and average molecular weight of poly(THPMA) were determined. Thermal stabilities of the polymers were given as comparing with each other by using TGA curves. Thermal degradation of poly(THPMA60%-co-BMA40%) was studied in detail.  相似文献   

7.
We report a facile strategy for fabricating fluorescent quantum dot (QD)‐loaded microbeads by means of microfluidic technology. First, a functional fluorine‐containing microemulsion was synthesized with poly[(2‐(N‐ethylperfluorobutanesulfonamido)ethyl acrylate)‐co‐(methyl methacrylate)‐co‐(butyl acrylate)] (poly(FBMA‐co‐MMA‐co‐BA)) as the core and glycidyl methacrylate (GMA) as the shell via differential microemulsion polymerization. Then, CdTe QDs capped with N‐acetyl‐l ‐cysteine (NAC) were assembled into the poly(FBMA‐co‐MMA‐co‐BA‐co‐GMA) microemulsion particles through the reaction of the epoxy group on the shell of the microemulsion and the carboxyl group of the NAC ligand capped on the QDs. Finally, fluorescent microbeads were fabricated using the CdTe QD‐loaded fluorine‐containing microemulsion as the discontinuous phase and methylsilicone oil as the continuous phase by means of a simple microfluidic device. By changing flow rate of methylsilicone oil and hybrid microemulsion system, fluorescent microbeads with adjustable sizes ranging from 290 to 420 µm were achieved. The morphology and fluorescent properties of the microbeads were thoroughly investigated using optical microscopy and fluorescence microscopy. Results showed that the fluorescent microbeads exhibited uniform size distribution and excellent fluorescence performance. © 2014 Society of Chemical Industry  相似文献   

8.
The purpose of this study was to study the mechanical properties of poly(methyl methacrylate) (PMMA)‐based bone cement incorporated with hydroxyapatite (HA) nanoparticles after surface modification by poly(methyl methacrylate‐co‐γ‐methacryloxypropyl timethoxysilane) [P(MMA‐co‐MPS)]. PMMA and P(MMA‐co‐MPS) were synthesized via free‐radical polymerization. P(MMA‐co‐MPS)‐modified hydroxyapatite (m‐HA) was prepared via a dehydration process between silane and HA; the bone cement was then prepared via the in situ free‐radical polymerization of methyl methacrylate in the presence of PMMA and P(MMA‐co‐MPS)–m‐HA. Fourier transform infrared (FTIR) spectroscopy, 1H‐NMR, and gel permeation chromatography were used to characterize the P(MMA‐co‐MPS). Thermogravimetric analysis and FTIR were used as quantitative analysis methods to measure the content of P(MMA‐co‐MPS) on the surface of HA. The effect of the proportion of m‐HA in the PMMA‐based bone cement on the mechanical properties was studied with a universal material testing machine. A 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay was also carried out to determine the cytotoxicity of the composite bone cement. The results showed that the surface modification of HA greatly improved the interaction between the inorganic and organic interfaces; this enhanced the mechanical properties of bone cement for potential clinical applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40587.  相似文献   

9.
The (Docosanyl acrylate‐co‐(octadecyl or hexadecyl acrylate)‐co‐maleic anhydride) terpolymers were prepared using different compositions of the used alkyl acrylates (namely, 90 : 10, 70 : 30, 50 : 50, 30 : 70, and 10 : 90) (DCA‐ODA)/(MA) or (DCA‐HDA)/(MA). The efficiency of these terpolymers as pour point depressants was discussed. Two western desert waxy crude oils with different wax content were used for evaluation. Correlation between pour point depression efficiency and rheological properties were performed. Rheological parameters were also computed and discussed. It was observed that the synthesized terpolymers showed non‐Newtonian pseudoplastic relationships at different concentrations of synthesized terpolymeres with monomer feed ratios of (DCA‐ODA (1 : 1))/(MA) or (DCA‐HDA (1 : 1))/(MA) = 90/10 mole %. This ratio showed a good ability to disperse wax crystals and improve the flow behaviors of tested two crude oils even at low temperatures below their pour points. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Heterogeneous latexes were prepared by a semicontinuous seeded emulsion polymerization process under monomer starved conditions at 80 °C using potassium persulfate as the initiator and sodium dodecyl sulfate as the emulsifier. Poly(butyl acrylate) latexes were used as seeds. The second‐stage polymer was poly(styrene‐co‐methyl methacrylate). By varying the amounts of methyl methacrylate (MMA) in the second‐stage copolymer, the polarity of the copolymer phase could be controlled. Phase separation towards the thermodynamic equilibrium morphology was accelerated either by ageing the composite latex at 80 °C or by adding a chain‐transfer agent during polymerization. The morphologies of the latex particles were examined by transmission electron microscopy (TEM). The morphology distributions of latex particles were described by a statistical method. It was found that the latex particles displayed different equilibrium morphologies depending on the composition of the second‐stage copolymers. This series of equilibrium morphologies of [poly(butyl acrylate)/poly(styrene‐co‐methyl methacrylate)] (PBA/P(St‐co‐MMA)) system provides experimental verification for quantitative simulation. Under limiting conditions, the equilibrium morphologies of PBA/P(St‐co‐MMA) were predicted according to the minimum surface free energy change principle. The particle morphology observed by TEM was in good agreement with the predictions of the thermodynamic model. Therefore, the morphology theory for homopolymer/homopolymer composite systems was extended to homopolymer/copolymer systems. © 2002 Society of Chemical Industry  相似文献   

11.
Wood–polymer composites (WPC) of Geronggang (Cratoxylon arborescens), a light tropical hardwood, impregnated with methyl methacrylate (MMA), methyl methacrylate-co-acrylonitrile (1 : 1; MAN), and styrene-co-acrylonitrile (3 : 2; STAN), were prepared by in situ polymerization using gamma radiation or the catalyst–heat treatment. The FTIR spectra of the three types of WPC, with polymer loadings ranging from 10 to 70%, were compared with that of the wood itself and the respective polymers. Characteristic peaks due to C?O vibration of MMA, C?N stretching of acrylonitrile, and ring stretching and bending of styrene monomers, were prominent in the samples that had higher polymer loadings. For the copolymeric systems, quantitation of the FTIR spectra of these characteristic peaks enabled calculations of incorporated acrylonitrile and styrene monomers in the composites to be made. The FTIR spectra of the residues remaining, after exhaustive extraction to remove homopolymer, showed that graft copolymerization of wood components with acrylonitrile and styrene monomers was possible, but not with MMA. Composites prepared by the two methods, gamma radiation and the catalyst–heat treatment, were shown to be chemically very similar.  相似文献   

12.
Cross-linked polyacrylic resin supported-cobalt (II) catalyst was successfully employed in controlled/“living” radical polymerization of various monomers including n-butyl acrylate (BA), ethyl methacrylate (EMA) and styrene (St). Well-defined polymers with predetermined molecular weight and relatively narrow molecular weight distribution were synthesized. After polymerization, the supported cobalt (II) catalyst was easily and effectively removed from the polymerization system by simple centrifugation and very pure polymer products were obtained (Co residue <0.1 ppm). Using the obtained polymers as macroinitiators, polymerization of methyl methacrylate (MMA) and fluorinated methacrylate ether 2-[(perfluorononenyl)oxyl] ethyl methacrylate (FNEMA) were performed, respectively. Well-defined and pure diblock copolymers PBA-b-PMMA, PS-b-PMMA and PS-b-PFNEMA were synthesized.  相似文献   

13.
In this study, an acrylate elastomer with light‐stable functional groups was synthesized by methyl methacrylate (MMA), butyl acrylate (BA), and a polymerizable UV stabilizer 2‐hydroxy‐4‐(3‐methacryloxy‐2‐hydroxylproroxy) benzophenone (BPMA) via emulsion polymerization, and the product was poly[methyl methacrylate‐co‐butyl acrylate‐co‐2‐hydroxy‐4‐(3‐methacryloxy‐2‐hydroxylproroxy) benzophenone] [poly(MMA‐co‐BA‐co‐BPMA)]. The composition and characteristics of poly (MMA‐co‐BA‐co‐BPMA) were determined by using Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H‐NMR), and ultraviolet–visible absorption spectroscopy (UV–vis). Further, the obtained poly(MMA‐co‐BA‐co‐BPMA) was blended with polyoxymethylene (POM) to modify its photostabilization, as well as the mechanical properties of POM composite were tested before and after UV irradiation. The result showed that poly(MMA‐co‐BA‐co‐BPMA) can be dispersed well in the POM matrix, which could play a role of improving compatibility with and toughening for POM, and its light‐stable functional groups could increase the UV resistance of POM composite. Mechanical properties of modified POM were kept well with higher impact strength and elongation at break than pure POM after UV irradiation. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
以自制的马来酸十六醇酯钠盐(SHM)为乳化剂、甲基丙烯酸甲酯(MMA)和甲基丙烯酸缩水甘油酯(GMA)为单体,改变单体配比,利用乳液聚合方法合成了4种带环氧基的纳米聚合物(NPs),NPs经与三甲胺盐酸盐阳离子化反应制得4种表面同时带正电荷和负电荷的两性聚合物微粒(CNPs)。对聚合物微粒的粒径和zeta电位进行了研究,用烧瓶振荡法研究了CNPs对大肠杆菌和金黄色葡萄球菌的抗菌性。结果表明,单体配比对NPs的粒径影响很小;随GMA用量增加,CNP的粒径增大,zeta电位上升;CNPs对大肠杆菌和金黄色葡萄球菌都有很好的抗菌性。  相似文献   

15.
Dodecyl methacrylate was synthesized as the intermediate monomer for the preparation of poly(dodecyl methacrylate)s, which were synthesized with emulsion polymerization techniques. The intrinsic viscosities were measured, and the viscosity‐average molecular weights were calculated. Polymers of dodecyl methacrylate with ultrahigh molecular weights (viscosity‐average molecular weight > 107) were synthesized through orthogonal experiments. The drag‐reduction properties of these polymers were studied in kerosene. The drag‐reducing behavior of these polymers exhibited a strong dependence on the molecular weight and Reynolds number, and these polymers could be used as effective oil‐soluble drag reducers and had good shear stabilities. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1622–1626, 2003  相似文献   

16.
New hybrid poly(hydroxyethyl methacrylate‐co‐methyl methacrylate)‐g‐polyhedral oligosilsesquioxane [poly(HEMA‐co‐MMA)‐g‐POSS] nanocomposites were synthesized by the combination of reversible addition fragmentation chain transfer (RAFT) polymerization and click chemistry using a grafting to protocol. Initially, the random copolymer poly(HEMA‐co‐MMA) was prepared by RAFT polymerization of HEMA and MMA. Alkynyl side groups were introduced onto the polymeric backbones by esterification reaction between 4‐pentynoic acid and the hydroxyl groups on poly(HEMA‐co‐MMA). Azide‐substituted POSS (POSS? N3) was prepared by the reaction of chloropropyl‐heptaisobutyl‐substituted POSS with NaN3. The click reaction of poly(HEMA‐co‐MMA)‐alkyne and POSS? N3 using CuBr/PMDEATA as a catalyst afforded poly(HEMA‐co‐MMA)‐g‐POSS. The structure of the organic/inorganic hybrid material was investigated by Fourier transformed infrared, 1H‐NMR, and 29Si‐NMR. The elemental mapping analysis of the hybrid using X‐ray photoelectron spectroscopy and EDX also suggest the formation of poly(HEMA‐co‐MMA)‐anchored POSS nanocomposites. The XRD spectrum of the nanocomposites gives evidence that the incorporation of POSS moiety leads to a hybrid physical structure. The morphological feature of the hybrid nanocomposites as captured by field emission scanning electron microscopy and transmission electron microscopic analyses indicate that a thick layer of polymer brushes was immobilized on the POSS cubic nanostructures. The gel permeation chromatography analysis of poly(HEMA‐co‐MMA) and poly(HEMA‐co‐MMA)‐g‐POSS further suggests the preparation of nanocomposites by the combination of RAFT and click chemistry. The thermogravimetric analysis revealed that the thermal property of the poly(HEMA‐co‐MMA) copolymer was significantly improved by the inclusion of POSS in the copolymer matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
A new series of liquid‐crystalline polymers with a polymer backbone of limonene‐co‐methyl methacrylate were synthesized and characterized, and the spacer length was taken to be nine methylene units. The chemical structures of the obtained olefinic compound and polymers were confirmed with elemental analysis and proton nuclear magnetic resonance spectroscopy. The thermal behavior and liquid crystallinity of the polymers were characterized with differential scanning calorimetry and polarized optical microscopy. The polymers exhibited thermotropic liquid‐crystalline behavior and displayed a glass‐transition temperature at 48°C. The appearance of the characteristic schlieren texture confirmed the presence of a nematic phase, which was observed under polarized optical microscopy. These liquid‐crystalline polymers exhibited optical activity. A comparison was also made with polyacrylates and polymethacrylate‐based materials. This revealed that the nature of the polymer backbone had a major effect on the liquid‐crystalline properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4595–4600, 2006  相似文献   

18.
Poly(methyl methacrylate‐co‐butyl methacrylate) [P(MMA‐co‐BMA)] nanoparticles were synthesized via emulsion polymerization, and incorporated into natural rubber (NR) by latex compounding. Monodispersed, core‐shell P(MMA‐co‐BMA)/casein nanoparticles (abbreviated as PMBMA‐CA) were produced with casein (CA) as surfactant. The chemical structure of P(MMA‐co‐BMA) copolymers were confirmed by 1H‐NMR and FTIR analyses. Transmission electron microscopy demonstrated the core–shell structure of PMBMA‐CA, and PMBMA‐CA homogenously distributed around NR particles, indicating the interaction between PMBMA‐CA and NR. As a result, the tensile strength and modulus of NR/PMBMA‐CA films were significantly enhanced. The tensile strength was increased by 100% with 10% copolymer addition, when the molar ratio of MMA:BMA was 8:2. In addition, scanning electron microscopy and atomic force microscopy results presented that the NR/PMBMA‐CA films exhibited smooth surfaces with low roughness, and PMBMA‐CA was compatible with NR. FTIR‐ATR analyses also suggested fewer PMBMA‐CA nanoparticles migrated out of NR. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43843.  相似文献   

19.
刘秉智  李文安 《应用化工》2007,36(2):205-206
以甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)、丙烯酸(AA)为单体,以十二烷基苯磺酸钠为乳化剂,当m(BA)∶m(MMA)∶m(AA)=33∶17∶1,通过乳液聚合制得丙烯酸酯类乳液,再加入填料及各种助剂,经过高速搅拌、均质而出料。并且讨论了乳化剂及引发剂用量对乳液聚合、乳液及涂料性能的影响。  相似文献   

20.
Various liquid crystalline and photoactive azobenzene monomers were synthesized and attached to copoly(methyl methacrylate‐glycidyl methacrylate) [copoly (MMA‐GMA)] to get high molecular weight side chain liquid crystalline (LC)/photoactive copolymers. Further, spacers are generated in situ and reactive groups are obtained after the modification. All monomers and polymers were thoroughly characterized by FTIR, 1H and 13C NMR, UV‐VIS spectrophotometry, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, and polarized optical microscopy. All side chain LC polymers showed higher thermal stability than that of copoly(MMA‐GMA). Three LC and one azo monomer exhibited characteristic nematic mesophase where as one LC monomer has shown nematic and sanded smectic‐A texture. The rate of trans‐cis isomerization of polymer was lower than that of the monomer and both monomers and polymers showed slow back isomerization. Present approach offers convenient way to synthesize high/desired molecular weight photoactive LC polymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号