首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A halogen‐free flame retardant with a macromolecular structure is presented. Its synthesis proceeds via polymerization of phosphorus‐containing acrylate monomers. The flame retardant was incorporated into poly(ethylene terephthalate) by extrusion. Samples with different concentrations (0.5, 2.5, and 5.0 wt%) as well as a 25 wt% masterbatch were prepared. All samples were transparent and colorless without any visible irregularities. Thermal investigations reveal an unchanged glass transition temperature. Tensile tests show the typical mechanical behavior of poly(ethylene terephthalate), but with an elevated Young's modulus. The burning behavior was investigated by several small‐flame tests in vertical and horizontal orientation, as well as by cone calorimetry. It is shown that samples with 2.5 wt% flame retardant pass the vertical UL94 test (V‐2, 20‐mm flame). The sample cannot be ignited in the horizontal fire test according to FMVSS 302. The oxygen index was measured to 28 vol%. Cone calorimetric measurements show that the effective heat of combustion as well as the total heat evolved is reduced.  相似文献   

2.
The structures of the intumescent charred layers formed from expandable graphite (EG)‐based intumescent halogen‐free flame retardant (HFFR) linear low‐density polyethylene (LLDPE) blends and their flame‐retardant mechanism in the condensed phase have been studied by dynamic Fourier transform infrared (FTIR), X‐ray photoelectron spectroscopy (XPS), laser Raman spectroscopy (LRS), scanning electron microscopy (SEM), differential thermal analysis (DTA) and thermal conductivity (TC) measurements. The dynamic FTIR, XPS and LRS data show that the carbonaceous structures of intumescent charred layers consist of EG and various numbers of condensed benzene rings and/or phosphocarbonaceous complexes attached by the P? O? C and P? N bonds or quaternary nitrogen products. The addition of EG can hasten the formation of these phosphocarbonaceous structures. The above results show that the flame‐retardant mechanism in the condensed phase is that the compact char structures, as observed by SEM, slow down heat and mass transfer between the gas and condensed phase and prevent the underlying polymeric substrate from further attack by heat flux in a flame. The DTA and TC data show that carbonaceous charred layers are good heat‐insulating materials, the TC value of which is only about one‐tenth of that of the corresponding blend and that they increase the oxidization temperature and decrease thermal oxidization heat of the LLDPE/EG/HFFR systems. © 2003 Society of Chemical Industry  相似文献   

3.
Butadiene‐rubber toughened styrene polymers, such as acrylonitrile‐butadiene‐styrene (ABS) copolymer and high impact polystyrene (HIPS), are noncharring polymers. They are generally blended with polycarbonate (PC) or polyphenyleneether (PPE), which are char forming polymers, to improve char forming ability for styrenic blends containing conventional phosphate flame retardants. To achieve cost effective flame retardant system, PET was selected as a potential char‐source for ABS blends through the thermogravimetric analysis (TGA) and chemical structure analysis of various polymers. PET may contribute to the enhancement of flame retardancy of ABS/PET blends, especially in the presence of small amounts of phenol novolac (PN). The effective flame retardancy of this system is believed to be accomplished through the enhancement of interchain reactions by PN. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Mg(OH)2 (MH) nanoparticles were synthesized by hydration of the light‐burned MgO at low temperature (70°C). Effects of additives, such as magnesium nitrate and magnesium acetate, on the size, morphology and agglomeration of MH particles were investigated. MH nanoparticles have platelet‐like structure and approximately 20–40 nm in thicknesses. The supersaturation degree plays an important role in magnesia hydration and is defined. When magnesium acetate was used as the additive, the hydroxyl ion can be homogeneously introduced into the solution. The size and morphology of MH nanoparticles are more homogeneous. Modified by titanate coupling agent, MH nanoparticles were used as the flame retardant for polypropylene (PP). The combustibility, mechanical properties and thermal behaviors of the PP/MH composites were characterized. The mechanical properties of PP/MH composites are not seriously deteriorated with increasing MH content. When the amount of MH fraction reached 65, the limiting oxygen index (LOI) value and UL 94 testing result of MH65 are 33.8 and V‐0 grading, respectively. The onset temperature (T10%) and the maximum thermal decomposition temperature (Tmax) of MH65 separately increased by approximately 100°C and 77°C than those of neat PP. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The halogen‐free flame retardant (HFFR) ethylene‐vinyl acetate copolymer (EVM)/ATH/SiO2 composites have been prepared by melting compounding method, and the flame retardant, thermal stability, rheological, electrical, and mechanical properties have been investigated by cone calorimeter, LOI, UL‐94, TG, FE‐SEM, rotational rheometer, dielectric breakdown, and ultimate tensile. The results indicate that the flame retardant of EVM vulcanizates is improved and the fire jeopardizing is dramatically reduced due to the addition of ATH. It is necessary that sufficient loading of ATH (≥120 phr) is needed to reach essential level (LOI > 30; V‐0 rating) of flame retardant for HFFR EVM/ATH/SiO2 composites used as cable in industry. The rheological characteristics show that at all the measurement frequencies, the storage and loss modulus of the composites increase monotonously as the concentration of ATH filler increases, while the complex viscosity and tan delta present reverse trend. And also, it has been found that the HFFR composites at high filler concentrations still keep good mechanical and electrical properties, which is very important for practical applications as cable. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
A novel halogen‐free and formaldehyde‐free flame retardant (FR), which contains phosphorus, nitrogen, and silicon, was synthesized for cotton fabrics considering the synergistic effect of phosphorus, nitrogen, and silicon. The structure of the new FR was characterized by Fourier‐trans‐form infrared spectroscopy, and the surface morphology of the treated fibre was observed using scanning electron microscope. The thermal property of the FR treated cotton fabric was studied through thermal gravimetric analysis. The TG results indicate that the FR can protect cotton fabric from fire to a certain degree. The vertical flammability test and limiting oxygen index results further indicate that the FR has excellent FR properties. Finally, the durability and other performance properties of the treated fabric were studied and the results show that the new materials can be used as a semi‐durable FR for cellulosic fibres. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The structures of the intumescent charred layers formed from polyolefin (PO) blends with expandable graphite (EG) and/or the other free‐halogen flame retardant (HFFR) and their flame‐retardant mechanism were studied by Fourier transform infrared (FTIR) spectroscopy, X‐ray photoelectron spectroscopy (XPS), laser Raman spectroscopy (LRS), scanning electron microscopy (SEM), differential thermal analysis (DTA), and thermal conductivity (TC) measurements. The FTIR, XPS, and LRS data showed that the carbonaceous structures of intumescent charred layers consist of EG and various numbers of condensed benzene rings and/or phosphocarbonaceous complexes attached by the P—O—C and P—N bonds or quaternary nitrogen or dehydrated zinc borate (ZB). These results and the morphologic structures observed by SEM have demonstrated that the compact structures of charred layers slow down heat and mass transfer between the gas and condensed phase and prevent the underlying polymeric substrate from further attack by heat flux in a flame. The DTA data provide the positive evidence for the flame‐retardant mechanism of the PO/EG/HFFR systems, which works by increasing the oxidation temperature and decreasing thermal oxidation heat. At the same time, the TC data reveal the flame‐retardant essence of the charred layers as good heat‐insulated materials whose TC value is only about 1/10 of the corresponding blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1190–1197, 2001  相似文献   

8.
A novel intumescent flame retardant (IFR), containing ammonium polyphosphate (APP) and poly(tetramethylene terephthalamide) (PA4T), was prepared to flame‐retard acrylonitrile‐butadiene‐styrene (ABS). The flame retardation of the IFR/ABS composite was characterized by limiting oxygen index (LOI) and UL‐94 test. Thermogravimetric analysis (TGA) and TGA coupled with Fourier transform infrared spectroscopy (TG‐FTIR) were carried out to study the thermal degradation behavior of the composite and look for the mechanism of the flame‐retarded action. The morphology of the char obtained after combustion of the composite was studied by scanning electron microscopy (SEM). It has been found the intumescent flame retardant showed good flame retardancy, with the LOI value of the PA4T/APP/ABS (7.5/22.5/70) system increasing from 18.5 to 30% and passing UL‐94 V‐1 rating. Meanwhile, the TGA and TG‐FTIR work indicated that PA4T could be effective as a carbonization agent and there was some reaction between PA4T and APP, leading to some crosslinked and high temperature stable material formed, which probably effectively promoted the flame retardancy of ABS. Moreover, it was revealed that uniform and compact intumescent char layer was formed after combustion of the intumescent flame‐retarded ABS composite. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
Seven halogen‐free flame retardant (FR) compounds were evaluated using pyrolysis combustion flow calorimetry (PCFC) and cone calorimetry. Performance of wires coated with the compounds was evaluated using industry standard flame tests. The results suggest that time to peak heat release rate (PHRR) and total heat released (THR) in cone calorimetry (and THR and temperature at PHRR in PCFC) be given more attention in FR compound evaluation. Results were analyzed using flame spread theory. As predicted, the lateral flame spread velocity was independent of PHRR and heat release capacity. However, no angular dependence of flame spread velocity was observed. Thus, the thermal theory of ignition and flame spread, which assumes that ignition at the flame front occurs at a particular flame and ignition temperature, provides little insight into the performance of the compounds. However, results are consistent with a heat release rate greater than about 66kW/m2 during flame propagation for sustained ignition of insulated wires containing mineral fillers, in agreement with a critical heat release rate criterion for burning. Mineral fillers can reduce heat release rate below the threshold value by lowering the flaming combustion efficiency and fuel content. A rapid screening procedure using PCFC is suggested by logistic regression of the binary (burn/no‐burn) results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
In this work, different concentrations, per hundred rubber (phr), of aluminum trihydrate (ATH) were added to thermoplastic rubber nanocomposite based on ethylene propylene diene monomer and linear low‐density polyethylene. The effect of the added compound on the flammability, rheological, mechanical properties, and electrical conductivity of the composite was studied. The results of the cone calorimeter showed a significantly reduction in the flammability of the composites occurred when the composite was treated with ATH. The peak heat release rate was reduced by about 66% when the composite was loaded with 180 phr of ATH. Moreover, the time to ignition prolonged up to 160%. The total smoke released decreased significantly as the concentrations of the ATH were increased. A reduction of about 69% in the total smoke released was observed when the composite was treated with 180 phr. The thermogravimetric analysis showed a reduction in the overall weight loss as the concentrations of ATH were increased. A reduction of about 50% of the original weight was observed when 180 phr of ATH was used. An appreciable decrease in tensile stress and strain with increasing ATH contents had been observed. The addition of ATH markedly reduced the conductivity of the thermoplastic rubber nanocomposite. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Ethylene‐propylene diene rubber (EPDM) and isotactic polypropylene (iPP) blends have widest industrial applications that require a degree of flame retardancy. Halogen‐free intumescent technology based on phosphorous salt is a significantly advanced approach to make the polymer flame‐retardant. Both ammonium polyphosphate and ethylenediamine phosphate are important intumescent compounds. Their combination with carbonific and spumific agents were studied in binary blends of EPDM/PP. The polymer system was vulcanized online during melt mixing. Intumescent flame‐retardant polymer systems exhibit good flame‐retardancy with optimum comparable physiomechanical, electrical, and fluid resistance properties, including lower smoke emission, which is essential to protect people because the visibility remains unaffected in the event of fire. Pronounced charring and intumescent effect appear to enhance the flame‐retardancy of the polymers. Possible expected intumescent mechanism is proposed based on the nonpyrolysis mechanism for the flame‐retarded polymer and the intumescent components. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 407–415, 2004  相似文献   

12.
The synergistic effects of exfoliated layered double hydroxides (LDH) with some halogen‐free flame retardant (HFFR) additives, such as hyperfine magnesium hydroxide (HFMH), microencapsulated red phosphorus (MRP), and expandable graphite (EG), in the low‐density polyethylene/ethylene vinyl acetate copolymer/LDH (LDPE/EVA/LDH) nanocomposites have been studied by X‐ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermal analysis (TGA and DTG), mechanical properties, limiting oxygen index (LOI), and UL‐94 tests. The XRD results show that EVA as an excellent compatilizer can promote the exfoliation of LDH and homogeneous dispersion of HFMH in the LDPE/EVA/HFMH/LDH nanocomposites prepared by melt‐intercalation method. The TEM images demonstrate that the exfoliated LDH layers can act as synergistic compatilizer and dispersant to make the HFMH particles dispersed homogeneously in the LDPE matrix. The results from the mechanical, LOI, and UL‐94 tests show that the exfoliated LDH layers can also act as the nano‐enhanced and flame retardant synergistic agents and thus increase the tensile strength, LOI values, and UL‐94 rating of the nanocomposites. The morphological structures of charred residues observed by SEM give the positive evidence that the compact charred layers formed from the LDPE/EVA/HFMH/LDH nanocomposites with the exfoliated LDH layers play an important role in the enhancement of flame retardant and mechanical properties. The TGA and DTG data show that the exfoliated LDH layers as excellent flame retardant synergist of MRP or EG can apparently increase the thermal degradation temperature and the charred residues after burning. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Microcapsulated red phosphorus (MRP), with a melamine–formaldehyde resin coating layer, was prepared by two‐step coating processes. The physical and chemical properties of MRP were characterized by Fourier‐transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) and other measurements. The flame retardant action and mechanism of MRP in the halogen‐free flame retardant (HFFR) polyolefins (PO) blends have been studied using cone calorimeter, limiting oxygen index (LOI), thermogravimetric analysis (TGA) and dynamic FTIR spectroscopy. The results show that the MRP, which is coated with melamine–formaldehyde resin, has a higher ignition point, a considerably lower amount of phosphine evolution and of water absorption compared with red phosphorus (RP) itself. The data observed by cone calorimeter, LOI and TGA measurements from the PO/HFFR blends demonstrated that the MRP can decrease the heat release rate and effective heat of combustion, and increase the thermostability and LOI values of PO materials. The dynamic FTIR results revealed the flame‐retardant mechanism that RP can promote the formation of charred layers with the P–O and P–C complexes in the condensed phase during burning of polymer materials. Copyright © 2003 Society of Chemical Industry  相似文献   

14.
The photoinitiated crosslinking of halogen‐free flame‐retarded ethylene‐vinyl acetate copolymer (EVA) by the phosphorous‐nitrogen compound NP28 in the presence of photoinitiator and crosslinker and characterization of the related properties have been investigated by gel determination, heat extension test, thermogravimetric analysis (TGA), mechanical measurement, and thermal aging test. The photocrosslinking efficiency of EVA/NP28 blend and various factors affecting the crosslinking process, such as photoinitiator, crosslinker, NP28 content, and irradiation temperature, were studied in detail and optimized by comparison of gel content. The results show that the EVA/NP28 blend filled with 28.2 wt % NP28 with a thickness of 1.6 mm is homogeneously photocrosslinked to a gel content of above 80 wt % with 4.8 s UV‐irradiation under optimum conditions. The data from TGA, mechanical measurement, and thermal aging test give evidence that the thermal stability and mechanical properties of photocrosslinked EVA/NP28 blend are much better than those of the unphotocrosslinked one.© 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Thin films of environmentally safe, halogen free, anionic sodium phosphate and cationic polysiloxanes were deposited on a Nyco (1:1 nylon/cotton blend) fabric via layer‐by‐layer (LbL) assembly to reduce the inherent flammability of Nyco fabric. In the coating process, we used three different polysiloxane materials containing different amine groups including, 35–45% (trimethylammoniummethylphenythyl)‐methyl siloxane‐55‐65% dimethyl siloxane copolymer chloride salt (QMS‐435), aminoethylaminopropyl silsesquioxane‐methylsilsesquioxane copolymer oligomer (WSA‐7021) and aminopropyl silesquioxane oligomers (WSA‐991), as a positive polyelectrolyte. Thermo‐gravimetric analysis showed that coated fabric has char yield around 40% at 600 °C whereas control fabric was completely consumed. The vertical flame test (VFT) on the LbL‐coated Nyco fabric was passed with after flame time, 2 s, and the char length of 3.81 cm. Volatile and nontoxic degradation products of flame retardant‐coated fabric were analyzed by pyrolysis gas chromatography mass spectroscopy (Py‐GCMS). Surface morphology of coated fabrics and burned fabric residues were studied by scanning electron microscopy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In this article, a novel flame retardant (coded as BNP) was successfully synthesized through the addition reaction between triglycidyl isocyanurate, 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide and phenylboronic acid. BNP was blended with diglycidyl ether of bisphenol‐A to prepare flame‐retardant epoxy resin (EP). Thermal properties, flame retardancy, and combustion behavior of the cured EP were studied by thermogravimetric analysis, limited oxygen index (LOI) measurement, UL94 vertical burning test, and cone calorimeter test. The results indicated that the flame retardancy and smoke suppressing properties of EP/BNP thermosets were significantly enhanced. The LOI value of EP/BNP‐3 thermoset was increased to 32.5% and the sample achieved UL94 V‐0 rating. Compared with the neat EP sample, the peak of heat release rate, average of heat release rate, total heat release, and total smoke production of EP/BNP thermosets were decreased by 58.2%–66.9%, 27.1%–37.9%, 25.8%–41.8%, and 21.3%–41.7%, respectively. The char yields of EP/BNP thermosets were increased by 46.8%–88.4%. The BNP decomposed to produce free radicals with quenching effect and enhanced the charring ability of EP matrix. The multifunctional groups of BNP with flame retardant effects in both gaseous and condensed phases were responsible for the excellent flame retardancy of the EP/BNP thermosets. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45291.  相似文献   

17.
The use of some types of expandable graphite (EG) as an intumescent flame‐retardant additive in polyolefins was studied using the cone calorimeter test (CCT), thermogravimetric analysis (TGA), the limiting oxygen index (LOI), and the‐UL 94 test and through measurement of EG's mechanical and electrical properties. The present study has shown that some suitable EG systems combined with other organic and inorganic halogen‐free flame‐retardant (HFFR) additives apparently can improve the flame‐retardant capacity with good mechanical properties of polyolefin blends. For linear low‐density polyethylene and/or ethylene vinyl acetate/EG/HFFR blends the limiting oxygen index can reach a rating above 29, and the UL‐94 test can produce a value of V–0. The CCT and TGA data show that the EG and EG/HFFR additives not only promoted the formation of carbonaceous char but also greatly decreased the heat release rate and the effective heat of combustion and increased the residues after burning. The synergistic effect of EG with other HFFR additives, such as zinc borate, the phosphorus–nitrogen compound NP28, and microcapsulated red phosphorus is examined and discussed in detail in this article. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1181–1189, 2001  相似文献   

18.
A star‐shaped DOPO derivative (GL‐3DOPO, P content 10.8 wt %) was synthesized through a two‐step reaction involving glycerol, acryloyl chloride, and DOPO. The derivative demonstrated a great improvement of thermal decomposition temperature increased to 360 °C from 194 °C (under N2 atmosphere), promoting its application in thermoplastics of high processing temperature. When blended with engineering plastics including PET, PBT, PC, PA6, and PA66 at a GL‐3DOPO loading of 25 wt %, all the compounds reached the UL94 V‐0 level and increased limit oxygen index (LOI). In PET system, LOI raised from 22.8% to 35.4% with P 2.5 wt % and passed the V‐0 test with only 0.8 P wt %. Compact char layers were found in the PET system after LOI test, suggesting that GL‐3DOPO acted both in gas and condensed‐phase mode. All results indicated that GL‐3DOPO could be a potential flame‐retardant for engineering plastics. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44892.  相似文献   

19.
A reactive, intumescent, halogen‐free flame retardant, 2‐({9‐[(4,6‐diamino‐1,3,5‐triazin‐2‐yl)amino]‐3,9‐dioxido‐2,4,8,10‐tetraoxa‐3,9‐diphosphaspiro[5.5]undecan‐3‐yl}oxy)ethyl methacrylate (EADP), was synthesized through a simple three‐step reaction from phosphorus oxychloride, pentaerythritol, hydroxyethyl methacrylate, and melamine. EADP exhibited excellent thermal stability and char‐forming ability, as revealed by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The TGA results show that the temperature at 5% weight loss was 297.8°C and the char yield at 700°C was 51.75%. SEM observation revealed that the char showed a continuous and compact surface and a cellular inner structure with different sizes. Composite of polypropylene (PP) with a 25 wt % addition of EADP (PP/EADP25) passed the UL‐94 V‐0 rating and showed a limiting oxygen index value of 31.5. Compared with those of neat PP, the flexural strength and modulus values of PP/EADP25 were somewhat improved, the tensile strength was basically unchanged, and the notched Izod impact strength was slightly decreased. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40054.  相似文献   

20.
采用两种偶联剂(KH570和JN114)对氢氧化镁(MH)进行表面改性,并以热塑性聚烯烃弹性体(TPO)为基体树脂,制得TPO/MH复合体系材料。探讨了偶联剂种类,MH用量对材料的力学性能和阻燃性能影响。力学性能测试结果表明,经KH570改性的复合体系拉伸强度明显比JN114改性的复合体系高,随着MH用量增加,拉伸性能下降;阻燃性能测试结果表明,两种偶联剂改性后的复合体系氧指数(OI)相差不大,随着MH份数增加,氧指数逐渐增大,MH份数为90时,在具有很好的拉伸强度和断裂伸长率的同时,材料燃烧时无滴落,白烟稀疏,氧指数(OI)达到27.9,为难燃材料,综合效果最佳;TG分析结果表明,在400℃时,材料的热失重速率最大;500℃和700℃的残炭率分别为42.22%和37.66%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号