首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Microfluidic chips for point-of-care immunodiagnostics   总被引:1,自引:0,他引:1  
We might be at the turning point where research in microfluidics undertaken in academia and industrial research laboratories, and substantially sponsored by public grants, may provide a range of portable and networked diagnostic devices. In this Progress Report, an overview on microfluidic devices that may become the next generation of point-of-care (POC) diagnostics is provided. First, we describe gaps and opportunities in medical diagnostics and how microfluidics can address these gaps using the example of immunodiagnostics. Next, we conceptualize how different technologies are converging into working microfluidic POC diagnostics devices. Technologies are explained from the perspective of sample interaction with components of a device. Specifically, we detail materials, surface treatment, sample processing, microfluidic elements (such as valves, pumps, and mixers), receptors, and analytes in the light of various biosensing concepts. Finally, we discuss the integration of components into accurate and reliable devices.  相似文献   

2.
3.
4.
“After a certain high level of technical skill is achieved, science and art tend to coalesce in aesthetics, plasticity, and form. The greatest scientists are always artists as well.” said Albert Einstein. Currently, photographic images bridge the gap between microfluidic/lab‐on‐a‐chip devices and art. However, the microfluidic chip itself should be a form of art. Here, novel vibrant epoxy dyes are presented in combination with a simple process to fill and preserve microfluidic chips, to produce microfluidic art or art‐on‐a‐chip. In addition, this process can be used to produce epoxy dye patterned substrates that preserve the geometry of the microfluidic channels—height within 10% of the mold master. This simple approach for preserving microfluidic chips with vibrant, colorful, and long‐lasting epoxy dyes creates microfluidic chips that can easily be visualized and photographed repeatedly, for at least 11 years, and hence enabling researchers to showcase their microfluidic chips to potential graduate students, investors, and collaborators.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
The role of skin in the human body is indispensable, serving as a barrier, moderating homeostatic balance, and representing a pronounced endpoint for cosmetics and pharmaceuticals. Despite the extensive achievements of in vitro skin models, they do not recapitulate the complexity of human skin; thus, there remains a dependence on animal models during preclinical drug trials, resulting in expensive drug development with high failure rates. By imparting a fine control over the microenvironment and inducing relevant mechanical cues, skin‐on‐a‐chip (SoC) models have circumvented the limitations of conventional cell studies. Enhanced barrier properties, vascularization, and improved phenotypic differentiation have been achieved by SoC models; however, the successful inclusion of appendages such as hair follicles and sweat glands and pigmentation relevance have yet to be realized. The present Review collates the progress of SoC platforms with a focus on their fabrication and the incorporation of mechanical cues, sensors, and blood vessels.  相似文献   

13.
14.
Light‐based flow systems for point‐of‐care devices are of interest because, in principle, sunlight could be used to operate them, potentially allowing for high functionality with minimal device complexity and expense. A light‐operated method to drive flow using poly(N‐isopropylacrylamide), a ‘smart’ polymer that changes wettability as a function of temperature, is introduced. It is grafted onto a carbon black‐polydimethylsiloxane surface, which converts light into a thermal pattern that valves flow at user‐defined locations. Flow rates are demonstrated ranging from 4 μL min?1 at 25 °C to 0.1 μL min?1 at 40 °C. The valving dynamics are also characterised, and a response time of less than 4 s is shown. Light‐operated flow could provide the simple architecture and advanced functionality needed in low‐resource point‐of‐care devices.  相似文献   

15.
16.
With the increased global population, it is more important than ever to expand accessibility to affordable personalized healthcare. In this context, a seamless integration of microfluidic technology for bioanalysis and drug delivery and complementary metal oxide semiconductor (CMOS) technology enabled data‐management circuitry is critical. Therefore, here, the fundamentals, integration aspects, and applications of CMOS‐enabled microfluidic systems for affordable personalized healthcare systems are presented. Critical components, like sensors, actuators, and their fabrication and packaging, are discussed and reviewed in detail. With the emergence of the Internet‐of‐Things and the upcoming Internet‐of‐Everything for a people–process–data–device connected world, now is the time to take CMOS‐enabled microfluidics technology to as many people as possible. There is enormous potential for microfluidic technologies in affordable healthcare for everyone, and CMOS technology will play a major role in making that happen.  相似文献   

17.
A novel surface‐enhanced Raman scattering (SERS) sensor is developed for real‐time and highly repeatable detection of trace chemical and biological indicators. The sensor consists of a polydimethylsiloxane (PDMS) microchannel cap and a nanopillar forest‐based open SERS‐active substrate. The nanopillar forests are fabricated based on a new oxygen‐plasma‐stripping‐of‐photoresist technique. The enhancement factor (EF) of the SERS‐active substrate reaches 6.06 × 106, and the EF of the SERS sensor is about 4 times lower due to the influence of the PDMS cap. However, the sensor shows much higher measurement repeatability than the open substrate, and it reduces the sample preparation time from several hours to a few minutes, which makes the device more reliable and facile for trace chemical and biological analysis.  相似文献   

18.
19.
Harnessing the ability to precisely and reproducibly actuate fluids and manipulate bioparticles such as DNA, cells, and molecules at the microscale, microfluidics is a powerful tool that is currently revolutionizing chemical and biological analysis by replicating laboratory bench-top technology on a miniature chip-scale device, thus allowing assays to be carried out at a fraction of the time and cost while affording portability and field-use capability. Emerging from a decade of research and development in microfluidic technology are a wide range of promising laboratory and consumer biotechnological applications from microscale genetic and proteomic analysis kits, cell culture and manipulation platforms, biosensors, and pathogen detection systems to point-of-care diagnostic devices, high-throughput combinatorial drug screening platforms, schemes for targeted drug delivery and advanced therapeutics, and novel biomaterials synthesis for tissue engineering. The developments associated with these technological advances along with their respective applications to date are reviewed from a broad perspective and possible future directions that could arise from the current state of the art are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号