首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model waste nitrile rubber powder (w‐NBR) was prepared by ambient grinding of aged NBR vulcanizate based on an oil seal formulation. The w‐NBR was characterized by scanning electron microscopic and optical microscopic techniques. Virgin nitrile rubber in a thermoplastic elastomeric 70:30 nitrile rubber/poly(styrene‐co‐acrylonitrile) (SAN) blend was replaced by w‐NBR, and the mechanical properties and swelling index were determined. The virgin NBR in the blend was replaced by the rubber present in w‐NBR (r‐w‐NBR) and the optimum mechanical properties were achieved at 45% replacement where the blend was still reprocessable. Transmission electron microscopic and atomic force microscopic studies reveal that w‐NBR particles coated with NBR are dispersed in a continuous SAN matrix. It was observed that migration of unreacted curatives from w‐NBR to virgin NBR is not significant and incorporation of curatives is necessary for attainment of optimum level of mechanical properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2348–2357, 2003  相似文献   

2.
The effects of dynamic vulcanization and blend ratios on mechanical properties and morphology of thermoplastic elastomeric (TPE) compositions, based on blends of nitrile rubber (NBR) and poly(styrene‐co‐acrylonitrile) (SAN), were studied. The TPE composition prepared by adding a rubber‐curatives masterbatch to softened SAN yields higher mechanical properties than that prepared by adding curatives to the softened plastic–rubber preblend. The blends having a higher rubber–plastic ratio (60 : 40 to 80 : 20) display thermoplastic elastomeric behavior, whereas those having a higher plastic–rubber ratio (50 : 50 to 90 : 10) display the behavior of impact‐resistant plastics. DSC studies revealed that NBR and SAN are thermodynamically immiscible. SEM studies of the thermoplastic elastomeric compositions show that SAN forms the matrix in which fine particles of NBR form the dispersed phase. It was further confirmed by dynamic mechanical thermal analysis. Dynamic vulcanization causes a decrease in the size of dispersed particles and improvement in mechanical properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1976–1987, 2003  相似文献   

3.
The formulation of recycled thermoplastic elastomeric materials (TPE) based on ground tyre rubber (GTR), generated from end of life tyres, can be an alternative strategy to deal with a type of waste responsible for increasingly environmental problems over the past decades. The incompatibility of GTR with thermoplastics places several issues on the formulation of these materials, which this study tries to overcome. An encapsulation strategy of the GTR by an elastomeric phase is proposed in this work to overcome the lack of adhesion between the materials. Ternary blends, composed of a highly flowable polypropylene homopolymer, an ethylene propylene diene monomer (EPDM) and GTR were formulated and their morphology and mechanical properties analyzed. The morphology of the blends showed interaction between the materials, revealing that the encapsulation of GTR by a rubber phase can be an adequate strategy to formulate recycled‐based TPE materials, if the dimension of the GTR particles is controlled and taken into consideration. The mechanical properties revealed the replacement effect of EPDM by GTR, and its dependence on the amount of that replacement. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40160.  相似文献   

4.
α,ω‐Dihydroxy‐polydimethylsiloxane (PDMS)/poly(methyl methacrylate) (PMMA) blends were prepared by the radical polymerization of methyl methacrylate in the presence of PDMS, with benzoyl peroxide as the initiator. The PDMS/PMMA blends obtained by this method were a series of stable, white gums, which were vulcanized into elastomers at room temperature with methyl triethoxysilicane (MTES). The MTES dosage was much larger than the amount necessary for end‐linking the hydroxy‐terminated chains of PDMS, with the excess being hydrolyzed into crosslinked networks, which were similar to SiO2 and acted as fillers. Investigations were carried out on the elastomeric materials by extraction measurements, swelling measurements, and scanning electron microscopy. The extraction data showed that at each composition, the sol fraction was less than expected. The extracted materials were further studied with swelling measurements, which revealed that the material obtained from an elastomer with a higher PMMA content had an apparently larger equilibrium swelling degree. Scanning electron microscopy demonstrated that the elastomer system had a microphase‐separated structure consisting of PMMA domains within a continuous PDMS matrix. Moreover, the mechanical properties of the elastomeric materials were studied in detail. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1547–1553, 2006  相似文献   

5.
As most thermoset material, phenolic molding compound (PMC) wastes are an environmental problem. Very few recycling solutions have been proposed so far for this type of material. A mechanical recycling method to valorize these materials is proposed in this work. It relies on the use of phenolic waste as filler in thermoplastic. Such phenolic filler can increase mechanical properties (tensile, flexural) of the matrix, and be used in substitution of traditional particulate fillers such as calcium carbonate or talc. In this study, several morphological parameters influencing the final mechanical properties of a PMC‐filled polypropylene (PP) micro‐composite are studied, such as filler loading rate, particles size distribution of the filler, and interfacial adhesion between the filler and the matrix. Some structural parameters are also studied and linked with mechanical properties, such as dispersion of the filler and crystallinity of the matrix. Finally, the properties of PMC‐filled PP are compared with CaCO3‐ and talc‐filled PP. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45849.  相似文献   

6.
This research analyzes the effect of ground tire rubber (GTR) and a novel metallocene‐based ethylene–propylene copolymer (EPR), with high propylene content, on the morphology and mechanical behavior of ternary polymer blends based on a highly flowable polypropylene homopolymer (PP). The PP/EPR blends morphology, with very small domains of EPR dispersed in the PP matrix, indicates a good compatibility among these materials, which leads to a significant improvement on elongation at break and impact strength. The incorporation of EPR on the rubber phase of thermoplastic elastomeric blends (TPE) based on GTR and PP (TPEGTR) has a positive effect on their mechanical performance, attributed to the toughness enhancement of the PP matrix and to the establishment of shell‐core morphology between the rubber phases. The mechanical properties of the ternary blends reveal that TPEGTR blends allow the upcycling of this GTR material by injection molding technologies. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42011.  相似文献   

7.
Abstract

Compounds of ground tyre rubber (GTR) and polypropylene (PP) were prepared in an internal mixer and characterised by means of mechanical, thermal and morphological testing. Only physical melt mixing could not provide a suitable interface compatibilisation and leads to compounds with poor mechanical properties. However, the application of a reactive melt mixing process, using organic peroxides as radical donators, was found to be suitable to initiate a compatibilisation reaction via interphase grafting. These compatibilised GTR/PP elastomeric alloy (EA) systems exhibit interesting mechanical properties which are close to that of conventional two phase thermoplastic elastomers (TPE) based on dynamically vulcanised ethylene propylene diene monomer (EPDM)/PP blends. Results of the morphology investigations substantiate the occurrence of a compatibilisation reaction between rubber particles and PP matrix during reactive mixing which is most probably responsible for the enhanced material properties of the GTR/PP EA.  相似文献   

8.
The effects of temperature and moisture on thermal and mechanical properties of high‐temperature cyanate ester composite materials were investigated. A resin transfer molding process was used to impregnate glass fiber fabrics with matrices that underwent thermoplastic or elastomeric toughness modifications. The elastomer‐modified material obtained the highest mode I fracture toughness values primarily because the toughener did not phase separate. Extended exposure to 200°C, however, deteriorated initial toughness improvements regardless of the modifier utilized. Although the thermal stability was increased by using thermoplastic modifiers in comparison to the elastomer‐modified material, the degradation was mainly governed by the cyanate ester network. Gaseous degradation products caused delaminations and therefore reduced strength when the materials were exposed to 200°C for 1000 h. Also, upon immersion in water at 95°C, the matrices absorbed up to 3.3 wt % more than previous values reported in the literature. Fiber/matrix interfacial phenomena were responsible for this behavior because fiber/matrix adhesion also was reduced drastically as shown by the strong reduction in flexural strength. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 556–567, 2000  相似文献   

9.
Water-swellable rubber (WSR) comprises super absorbent polymer (SAP) embedded in a rubber matrix and has been commonly used as sealants and caulks, in which high water uptake and sufficient mechanical strength are required. In this work, we investigated the swelling behavior and mechanical properties of rubber composites comprising SAP powders. A reinforcement effect is caused by the SAP particles, which are described using a modified Guth–Gold equation up to the semi-dilute region. The complex modulus shows upper deviation at high SAP content owing to network formation between SAP particles. The swelling force of the WSR is explained by the amount of SAP particles in the surface layer of the matrix up to the semi-dilute region. The formation of the SAP network leads to an appreciable increase in the swelling force of WSR, as SAP particles embedded in the matrix also contribute to the swelling of WSR. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48535.  相似文献   

10.
Abstract

Blends of ethylene propylene diene terpolymer (EPDM) rubber with thermoplastic polyolefins such as low‐density polyethylene (LDPE), high‐density polyethylene (HDPE), high molecular weight polypropylene (PP), and polypropylene random copolymer grade (PP‐R) were prepared by melt mixing. The physico‐mechanical properties, equilibrium swelling in benzene, and aging properties of the binary blends were investigated, analyzing the effect of the rubber/thermoplastics ratio and the type of the thermoplastic material on these properties. The data obtained indicate that EPDM/PP‐R blend in 20/80 w/w% shows the highest physico‐mechanical properties with improved retained tensile strength at 90°C for 7 days. This blend ratio also gives excellent retained equilibrium swelling in benzene at room temperature for 7 days, although EPDM/LDPE blend in 80/20 w/w% imparts the highest retained elongation at break at 90°C for 7 days.  相似文献   

11.
Abstract

In the present work, the influence of multiwalled carbon nanotubes (MWCNTs) on the flame retardancy and rheological, thermal and mechanical properties of polybutilen terephthalate (PBT) and polypropylene (PP) matrixes has been investigated. The carbon nanotube content in the thermoplastic materials was 2 and 5?wt‐%. The nanocomposites were obtained by diluting a masterbatch containing 20?wt‐% nanotubes using a twin‐screw extruder and the thermal properties were analysed by differential scanning calorimetry and thermogravimetric analysis; thermomechanical properties were determined by dynamic mechanical thermal analysis and the rheological behaviour was studied by a Thermo Haake Microcompounder. The results concerning the flame retardancy show that the MWCNTs are not equally effective as flame retardants in PP and PBT. The ignition time is increased only for PBT whereas the extinguishing time is decreased for PP and PBT. The reinforcement of the thermoplastics with multiwall carbon nanotubes is improved regarding the mechanical and thermal properties of the nanocomposites compared to pristine materials and the behaviour of thermoplastic nanocomposites regarding fire retardancy depends on the nature of the polymeric matrix.  相似文献   

12.
Thermoset materials obtained from styrene/vinyl ester resins of different molecular weights modified with poly(methyl methacrylate) (PMMA) were prepared and studied. Scanning electron microscopy and transmission electron microscopy micrographs of the fracture surfaces allowed the determination of a two‐phase morphology of the modified networks. Depending on the molecular weight of the vinyl ester oligomer, the initial content of the PMMA additive, and the selected curing temperature, different morphologies were obtained, including the dispersion of thermoplastic‐rich particles in a thermoset‐rich matrix, cocontinuous structures, and the dispersion of thermoset‐rich particles in a thermoplastic‐rich matrix (phase‐inverted structure). Density measurements were performed to determine the effect of the PMMA‐modifier concentration and curing temperature on the volume shrinkage of the final materials. The development of cocontinuous or thermoplastic‐rich matrices was not too effective in controlling the volume shrinkage of the studied vinyl ester systems. The evaluation of the dynamic mechanical behavior, flexural modulus, compressive yield stress, and fracture toughness showed that the addition of PMMA increased the fracture resistance without significantly compromising the thermal or mechanical properties of the vinyl ester networks. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
New nanocomposite thermoplastic vulcanizates (TPVs) comprising dynamically cross‐linked nanoscale EPDM rubber particles dispersed throughout the polypropylene (PP) matrix have been prepared by both batch and continuous melt blending of PP with EPDM in the presence of vulcanizing ingredients, nanoclay and maleated EPDM (EPDM‐g‐MA) as compatibilizer. X‐ray diffraction, linear melt viscoelastic measurement, and tensile mechanical behavior results revealed that the developed microstructure is strongly affected by the type of the melt compounding process as well as the route of material feeding. When EPDM phase was precompounded with a vulcanizing agent, nanoclay, and EPDM‐g‐MA prior to the melt blending with PP, not only nanosize cross‐linked rubber particles appeared uniformly throughout the PP continuous phase, but also the melt blending leads to the significant enhancement of the mechanical properties compared with counterpart samples prepared by one‐step melt mixing process. Also better dispersion of nano layers in the rubber compound before melt blending with PP results in higher mechanical properties of the resulted TPV. POLYM. ENG. SCI., 56:914–921, 2016. © 2016 Society of Plastics Engineers  相似文献   

14.
The present study develops new composite materials derived from environmentally friendly material, based on lignocellulosic fillers combined with a thermoplastic matrix. Almond husk, obtained as a by‐product of the agri‐food industry, has been used as a filler, combined with PVC thermoplastic matrix. This composite type (lignocellulosic material/thermoplastic matrix) is the object of this work for the advantages that it offers in environmental protection terms. With a view to identifying the degree of influence of filler amount, plasticizer concentration, and filler particle size on the properties of this new composite, we tested its mechanical properties and analyzed tensile fracture surfaces using scanning electron microscopy. POLYM. COMPOS., 28:71–77, 2007. © 2007 Society of Plastics Engineers  相似文献   

15.
This study investigated the use of an available agricultural Tunisian vine stem waste as a filler material. Composites of green materials were prepared using vine stems as filler and low density polyethylene (LDPE) as a matrix. A series of composite films was prepared by different loadings of the vine stem waste with 10–50% of the filler in 10% intervals. The ensuing materials were characterized by several techniques. The morphology of the composites was investigated using scanning electron microscopy (SEM). The thermal and mechanical properties were studied using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA), respectively. The results indicated that vine‐stem based particles enhanced the thermo‐mechanical properties of the thermoplastic matrix and demonstrated that this available lignocellulosic biomass of vine stems can be considered to be a promising filler material. However, the obtained result of water absorption indicated that the maximum limit of the filler content should not exceed 30% of vine stems. POLYM. COMPOS., 36:817–824, 2015. © 2014 Society of Plastics Engineers  相似文献   

16.
Crushed tire rubber particles (CR) have been dispersed into a recycled poly(carbonate) matrix (rPC) to obtain an eco‐friendly plastic (EFP). A positive synergy was expected from the association of an elastomeric phase to a tough thermoplastic matrix, helping on the other hand to develop a plastic with low impact on the environment. Mechanical melt‐mixing alone cannot provide a suitable interface, and led to blends with poor mechanical properties. Consequently, we have investigated different strategies to improve the EFP properties: First, the rubber surface has been treated by flaming or washing with dichloromethane and second, two copolymers, poly(ethylene‐co‐ethyl acrylate‐tert‐hydroxyl methacrylate) (E‐EA‐MAH) and poly(ethylene‐co‐methyl acrylate‐ter‐glycidyl methacrylate) (E‐MA‐GMA), were used to compatibilize CR particles with rPC matrix by reactive melt‐mixing in an internal mixer. The resulting blends mechanical properties were studied through static tension experiments and interpreted to the light of electronic microscopy fractography analysis and nanoindentation experiments. Significant gain of mechanical properties can be obtained by decreasing CR size under 140 μm (especially for CR contents between 5 and 20% m/m). To reach similar properties with rubber particles of diameter over 140 μm (but under 350 μm), it is necessary to activate their surface by either dichloromethane washing or flaming. Additional use of a compatibilizer extends the plastic behaviour domain of the EFP. rPC‐20% w/w CR is the best alternative material of our study. POLYM. ENG. SCI., 47:1768–1776, 2007. © 2007 Society of Plastics Engineers  相似文献   

17.
Polymer–polymer materials consist of a thermoplastic matrix and a thermoplastic reinforcement. Recent research activities concentrate on the manufacturing of semi‐finished polymer–polymer materials in other shapes than the commercially available tapes and sheets. In particular, a pellet‐like form provides the possibility of processing the polymer–polymer material by injection and compression molding. Nevertheless, the thermoplastic reinforcement is vulnerable to excessive heat and the processing usually needs special attention. The current study investigates the processing of long‐polymer‐fiber reinforced thermoplastic pellets, namely polypropylene‐polyethylene terephthalate and a single‐polymer polyethylene terephthalate, by extrusion for subsequent compression molding applications. The flow characteristics of the material as well as the preservation of the polymer reinforcement can be handled by accurate temperature control. The tensile and impact properties decrease with increasing process temperature though. Moreover, the results prove that the use of a common long‐fiber reinforced thermoplastic process chain is applicable to the newly developed polymer–polymer material. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39716.  相似文献   

18.
A new technique was used to fabricate performed glass fiber/polypropylene GMTs. The method utilizes thermoplastic powder and fiber roving in a spray-up procedure in which a porous perform in fabricated, heated and molded. The objective was to compare the properties of various preformed GMT composition with two commercial GMTs and to relate the mechanical properties to the microstructure of the materials. Preformed GMTs were fabricated with various fiber lengths and with or without a fiber/matrix adhesion promotor. Processing observation, microstructure, tensile creep modulus, and tensile strength of these preformed GMTs are reported. Fiber length and the addition of a fiber/matrix adhesion promotor had generally little effect on the modulus and strength of the preformed GMT. Comparisons with two structurally different commercial GMTs also showed negligible effects on modulus and strength. The major reason for this is suggested to be the inhomogeneities of the materials. The mechanical properties are controlled by local inhomogeneities rather than by the general microstructure of the material. These inhomogeneities arise from the fiber arrangement in the semi-finished sheet or perform. Since the microstructure of preformed GMT can be controlled, this material is well suited for future studies on the effect of better fiber dispersion.  相似文献   

19.
In this research, the reinforcing effect of fillers including canola stalk, paulownia and nanoclay, in polypropylene (PP) has been investigated. In the sample preparation, 50 wt% of lignocellulosic materials and 0, 3, and 5 wt% of nanoclay particles were used. The results showed that while flexural and tensile properties were moderately enhanced by the addition of nanoclay in the matrix, notched Izod impact strengths decreased dramatically. However, with increase in the nanoclay content (5 wt%), the flexural and tensile properties decreased considerably. The mechanical properties of composites filled with paulownia are generally greater than canola stalk composites, due to the higher aspect ratio. The thickness swelling and water absorption of the composites significantly decreased with the increase in nanoclay loading. Except tensile modulus, the differences between the type of fibrous materials and nanoclay contents had significant influence on physicomechanical properties. Morphologies of the composites were analyzed using transmission electron microscopy (TEM) and X‐ray diffraction (XRD), and the results showed increased d‐spacing of clay layers indicating enhanced compatibility among PP, clay, and lignocellulosic material. TEM micrographs also confirmed that the composites containing 3 wt% nanoclay had uniform dispersion and distribution of clay layers in the polymer matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
The effects of different fillers on physical, mechanical, and optical properties of styrenic‐based thermoplastic elastomers were investigated by experimental study. Poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] block copolymer (SEBS)‐based thermoplastic elastomer composites were prepared in a co‐rotating intermeshing twin‐screw extruder, using silica and calcite as filler materials with three different particle sizes. The loading ratios in the composites were varied. Hardness, density, tensile strength, tear strength, compression set, wear resistance, transmittance, and haze measurements were performed. Thermal properties and morphological structure were investigated by differential scanning calorimeter (DSC) and scanning electron microscopy (SEM), respectively. The results show that, an interaction between silica and the polymer matrix exists, whereas calcite does not show any interaction with the polymer. Therefore, it is concluded that, calcium carbonate can be used in the composite as filler for cost efficiency, whereas silica can be used as reinforcing material in SEBS‐based thermoplastic elastomer composites, when optical properties are also concerned. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号