首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用缩聚反应后期桐油与双环戊二烯不饱和聚酯(DCPD-UPR)主链上不饱和双键的Diels-Alder(D-A)反应合成了桐油改性DCPD-UPR,研究了各种原料用量对桐油改性DCPD-UPR其浇注体力学性能的影响。结果表明:当顺酐与苯酐的物质的量比为2∶1~3∶1,双环戊二烯与顺酐物质的量比为0.6~0.8∶1,1,2-丙二醇与二甘醇物质的量比2∶1,缩聚反应后期加入10%(质量分数)桐油,苯乙烯质量分数为35%~40%时,获得的桐油改性DCPD-UPR粘度适中,浇注体的断裂伸长率提高了78.2%,冲击强度提高了82.0%。  相似文献   

2.
采用催化水解加成法合成了桐油改性双环戊二烯不饱和聚酯,通过对桐油滴加前后不饱和聚酯的凝胶色谱及红外表征,证实了桐油与不饱和聚酯分子链中的双键发生了Diels-Alder反应。研究了桐油加入量对树脂涂膜的气干性、附着力、柔韧性、硬度、耐磨性及树脂耐热性能的影响,并确定了桐油的最佳加入量。结果表明:较未改性的双环戊二烯不饱和聚酯(DCPD-UPR),桐油基DCPD-UPR的涂膜具有更好的气干性、柔韧性、粘接性和耐磨性,并且桐油基DCPD-UPR的耐热性也优于未改性的DCPD-UPR。  相似文献   

3.
聚氨酯改性不饱和聚酯的徽观结构与性能   总被引:3,自引:0,他引:3       下载免费PDF全文
鲁博  张林文  潘则林  王才 《化工学报》2006,57(12):3005-3009
利用与天然纤维具有良好亲和性的聚酯聚氨酯(PU)改性不饱和聚酯(UP),通过扫描电镜(SEM)、傅里叶红外光谱(FT-IR)、接触角和力学性能等,研究了改性不饱和聚酯的微观结构、反应程度和主要性能.研究结果表明,引入PU提高了不饱和聚酯树脂的韧性,增加了与天然纤维的界面浸润性,降低了不饱和聚酯树脂的固化收缩率.所得改性不饱和聚酯的冲击断裂截面表现为韧性断裂;与天然纤维的接触角随着聚氨酯添加量的增加而降低,表明改性不饱和聚酯与天然纤维的浸润性增强.力学性能测试表明,当PU含量为5%时,其冲击强度可提高80%,弯曲模量降低小于20%,固化收缩率低于4%.  相似文献   

4.
Two classes of nanocomposites were synthesized using an unsaturated polyester resin as the matrix and sodium montmorillonite as well as an organically modified montmorillonite as the reinforcing agents. X‐ray diffraction pattern of the composites showed that the interlayer spacing of the modified montmorillonite expanded from 1.25 nm to 4.5 nm, indicating intercalation. Glass transition values of these composites increased from 72°C, in the unfilled unsaturated polyester, to 86°C in the composite with 10% organically modified montmorillonite. From Scanning Electron Microscopy, it is seen that the degree of intercalation/exfoliation of the modified montmorillonite is higher than in the unmodified one. The mechanical properties also supported these findings, since in general, the tensile modulus, tensile strength, flexural modulus, flexural strength and impact strength of the composites with modified montmorillonite were higher than the corresponding properties of the composites with unmodified montmorillonite. The tensile modulus, tensile strength, flexural modulus and flexural strength values showed a maximum, whereas the impact strength exhibited a minimum at approximately 3–5 wt% modified montmorillonite content. These results imply that the level of exfoliation may also exhibit a maximum with respect to the modified montmorillonite content. The level of improvement in the mechanical properties was substantial. Adding only 3 wt% organically modified clay improved the flexural modulus of unsaturated polyester by 35%. The tensile modulus of unsaturated polyester was also improved by 17% at 5 wt% of organically modified clay loading.  相似文献   

5.
不饱和聚酯树脂/大麻纤维复合材料性能的研究   总被引:1,自引:0,他引:1  
采用模压工艺制备了不饱和聚酯(UP)树脂/大麻纤维复合材料,研究了大麻纤维加入量及纤维的碱处理、乙酰化处理及偶联剂处理对复合材料力学性能的影响;采用傅立叶变换红外光谱仪对复合材料的结构进行了表征和分析。结果表明,随着大麻纤维含量的增加,UP树脂/大麻纤维复合材料的拉伸弹性模量逐渐增加,拉伸强度、弯曲强度、弯曲弹性模量及冲击强度等均先降低而后逐渐增大;偶联剂处理对复合材料力学性能的改善效果最好;偶联剂与纤维之间发生了酯化反应。  相似文献   

6.
SMC/BMC用不饱和聚酯提高玻纤浸润的改性与研究   总被引:1,自引:1,他引:0  
采用与玻纤具有良好亲和性的有机蒙脱土/气相白炭黑(OMMT/SiO2)改性不饱和聚酯,通过XRD、FTIR、接触角和力学性能,研究了改性不饱和聚酯的微观结构和主要性能.研究结果表明,随着OMMT/SiO2的加入,树脂与玻纤接触角变小,改性不饱和聚酯与玻纤的浸润性增强.物理性能测试表明,当OMMT/SiO2含量为4%时,不饱和聚酯浇铸体冲击强度可提高50%,弯曲强度下降低于15%.  相似文献   

7.
以聚酯(PEA、PEPA)或聚醚(PTMG)和TDI为原料合成聚氨酯(PU)预聚体,用三异丙醇胺(TIPA)和1,4-丁二醇(BDO)的混合物作扩链剂制备PU弹性体。讨论了软段相对分子质量、弹性体交联点相对分子质量和扩链剂的种类对PU弹性体性能的影响。结果表明,PU弹性体的硬度、拉伸强度、300%模量和撕裂强度随软段相对分子质量的增加而下降,而伸长率和冲击弹性随软段相对分子质量的增加而增加;交联点相对分子质量为6600时,PTMG2000为软段的PU弹性体的拉伸强度最高,达到28.44MPa;与TMP/BDO扩链的聚酯型PU弹性体相比,TIPA/BDO扩链的弹性体的拉伸强度、伸长率和撕裂强度均较高,而硬度、300%模量和冲击弹性差异不大。  相似文献   

8.
An intercrosslinked network of varying percentages of N,N′-bismaleimido-4,4′-disphenyl methane (BMI), vinyl ester oligomer (VEO) modified unsaturated polyester (UP) matrices have been developed. Vinyl ester oligomer was prepared by reacting commercially available epoxy resin GY 250 (Ciba-Geigy) and acrylic acid was used as toughening agent for unsaturated polyester resin. BMI-VEO-UP matrices were characterized for their mechanical properties, viz tensile strength, flexural strength and unntoched Izod impact test as per ASTM standards. The dielectric strength and water absorption measurements were also performed according to ASTM standards. Data obtained from mechanical studies, dielectric strength and water absorption indicate that the introduction of VEO into unsaturated polyester resin improves mechanical properties and affects the moisture resistance according to its percentage concentration. The incorporation of BMI into the VEO modified unsaturated polyester system improves mechanical properties, dielectric strength and resistance to moisture absorption according to its percentage concentration.  相似文献   

9.
A series of the exfoliated or intercalated PU/organoclay nanocomposite thin films were prepared by in situ polymerization of polyol/organoclay mixture, chain extender and diisocyanate. The surface mechanical properties of the PU/organoclay nanocomposite films were investigated by means of nanoindentation. The results show that the hardness, elastic modulus and scratch resistant of the nanocomposites dramatically improved with the incorporation of organoclay. This improvement was dependent on the clay content as well as the formation structure of clay in the PU matrix. At 3% clay content, the hardness and elastic modulus of intercalated nanocomposites increased by approximately 16% and 44%, respectively, compare to pure PU. For exfoliated nanocomposite, the improvements in these properties were about 3.5 and 1.6 times higher than the intercalated ones. The exfoliated PU nanocomposites also had greater hardness and showed better scratch resistance compared to the intercalated ones.  相似文献   

10.
玻璃微珠改性含油铸型尼龙力学性能研究   总被引:5,自引:1,他引:4  
研究了玻璃微珠改性含油铸型尼龙复合材料的力学性能。结果表明,玻璃微珠使复合材料的冲击强度有所降低;拉伸强度、拉伸弹性模量、弯曲强度和弯曲弹性模量均得到提高,在玻璃微珠的质量分数为15%—20%时提高幅度较大;复合材料的硬度也有所提高。  相似文献   

11.
The intercrosslinked networks of unsaturated polyester (UP) toughened epoxy–clay hybrid nanocomposites have been developed. Epoxy resin (DGEBA) was toughened with 5, 10 and 15% (by wt) of unsaturated polyester using benzoyl peroxide as radical initiator and 4,4′-diaminodiphenylmethane as a curing agent at appropriate conditions. The chemical reaction of unsaturated polyester with the epoxy resin was carried out thermally in presence of benzoyl peroxide-radical initiator and the resulting product was analyzed by FT-IR spectra. Epoxy and unsaturated polyester toughened epoxy systems were further modified with 1, 3 and 5% (by wt) of organophilic montmorillonite (MMT) clay. Clay filled hybrid UP-epoxy matrices, developed in the form of castings were characterized for their thermal and mechanical properties. Thermal behaviour of the matrices was characterized by differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Mechanical properties were studied as per ASTM standards. Data resulted from mechanical and thermal studies indicated that the introduction of unsaturated polyester into epoxy resin improved the thermal stability and impact strength to an appreciable extent. The impact strength of 3% clay filled epoxy system was increased by 19.2% compared to that of unmodified epoxy resin system. However, the introduction of both UP and organophilic MMT clay into epoxy resin enhanced the values of mechanical properties and thermal stability according to their percentage content. The impact strength of 3% clay filled 10% UP toughened epoxy system was increased by 26.3% compared to that of unmodified epoxy system. The intercalated nanocomposites exhibited higher dynamic modulus (from 3,072 to 3,820 MPa) than unmodified epoxy resin. From the X-ray diffraction (XRD) analysis, it was observed that the presence of d 001 reflections of the organophilic MMT clay in the cured product indicated the development of intercalated clay structure which in turn confirmed the formation of intercalated nanocomposites. The homogeneous morphologies of the UP toughened epoxy and UP toughened epoxy–clay hybrid systems were ascertained from scanning electron microscope (SEM).  相似文献   

12.
Block copolymers of unsaturated polyester were prepared by condensation polymerization of hydroxyl or carboxyl terminated liquid rubbers with maleic anhydride, phthalic anhydride, and propylene glycol. The condensate obtained was mixed with styrene monomer to get an unsaturated polyester resin formulation. In this study, copolymers of unsaturated polyesters with hydroxy terminated polybutadiene, carboxy terminated nitrile rubber, and hydroxy terminated natural rubber were prepared. Mechanical properties such as tensile strength, tensile modulus, elongation at break, toughness, impact strength, surface hardness, abrasion resistance, and water absorption were evaluated after the resin was cured in appropriate molds for comparison with the control resin. The fracture toughness and impact resistance of CTBN‐modified unsaturated polyester show substantial improvement by this copolymerization without seriously affecting any other property. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1956–1964, 2004  相似文献   

13.
An attempt was made to improve the toughness of fly ash (FA)/general‐purpose unsaturated polyester resin (GPR) composites. Elastomer [styrene–butadiene rubber (SBR) or acrylic copolymer (AC)]‐encapsulated fillers (FA or CaCO3) were made through the coagulation of the emulsified elastomer containing the filler with constant stirring. The elastomer‐encapsulated fillers were added to GPR at concentrations as high as 15 wt % to make FA/SBR or AC/GPR composites. The mechanical properties (i.e., the tensile strength, tensile modulus, tensile elongation, flexural strength, flexural modulus, impact strength, and hardness) of FA/GPR, FA/SBR/GPR, and FA/AC/GPR composites were studied. The tensile‐fractured surfaces of all the composites were studied with scanning electron microscopy. The thermal stability was studied with thermogravimetric analysis. An analysis of the results indicate that this modification technique is rather easy and more economical than the chemical modification of filler surfaces with functional silane coupling agents. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 171–184, 2005  相似文献   

14.
In this study, composites of unsaturated polyester resin (UPR), synthesized from recycled polyethylene terephthalate (PET), with 10 to 40% in volume of corn straw fiber (CSF), were elaborated and studied the effect of fiber content on their physical and mechanical properties. The content of cellulose (48.97%), hemicellulose (24.06%), and lignin (6.59%) were determined by chemical characterization of CSF. The characteristic bonds of the UPR were identified as a cross-linking network between the styrene monomer (ST) and the unsaturated polyester (UP) through FTIR. Two decomposition stages were observed by TGA–DTG. The results of physical and mechanical properties showed that as the fiber content increased in the UPR, the water absorption increased (0.6% to 2.56%), on the other hand, the density (1218.23 to 1150.28 kg/m3), flexural strength (50.58 to 26.98 MPa), flexural modulus (2.66 to 2.29 GPa), tensile strength (8.62 to 3.65 MPa), tensile modulus (1.18 to 0.43 GPa), and hardness (81.67 to 65.67 Shore D), they decreased. SEM analysis showed some defects in the fiber distribution in the UPR, which affected the mechanical properties of the composites. This research contributes to the development of new material from use of two waste materials for the benefit of the environment.  相似文献   

15.
An intercrosslinked network of hybrid bismaleimide (BMI) modified vinyl ester oligomer–unsaturated polyester matrix systems have been developed. Vinyl ester oligomer (VEO) was used as a toughening agent for unsaturated polyester resin and was added in 2, 4, and 6% (by wt). Benzoyl peroxide was used as curing agent. The VEO‐toughened unsaturated polyester matrix systems were further modified with 5, 10, and 15% (by wt) of bismaleimide. Bismaleimides modified vinyl ester–unsaturated polyester matrices were characterized by mechanical (tensile strength, flexural strength, tensile modulus, flexural modulus, and impact strength), thermal [differential scanning calorimetry (DSC), thermogravimetic analysis (TGA), heat deflection temperature analysis (HDT)] and morphological studies [scanning electron microscope (SEM)] and water absorption. Data obtained from mechanical studies indicated that the introduction of VEO into unsaturated polyester resin improves the fracture toughness. The introduction of BMI into VEO incorporated unsaturated polyester resin enhanced both thermal and mechanical behavior. The scanning electron micrographs of fractured surfaces of VEO‐modified unsaturated polyester systems and BMI modified vinyl ester–unsaturated polyester matrices illustrate the presence of homogeneous morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 167–177, 2007  相似文献   

16.
The effects of additives in various vegetable oils on the physical, mechanical, and adhesion properties of carbon black/rubber compounds were studied. Various doses of castor oil and some other oils such as paraffin oil, vegetable oil 1, and cashew nut shell liquid (CNSL) at a fixed dose (1 phr) were used. With an increase in the castor oil content, the modulus, tear strength, and tensile strength increased, whereas the hardness and adhesive strength exhibited little variation up to 1 phr. Beyond 1 phr castor oil, the modulus, tear strength, and hardness decreased, whereas the adhesive and tensile strengths increased up to 2.5–3 phr and then decreased. Therefore, castor oil seemed to behave as a coupling agent up to 1 phr and as a coupling agent and a plasticizer in the range of 1–3 phr; beyond that, the main role of castor oil was plasticization. When various oils at a fixed dose (1 phr) were compared, it was found that the vegetable oils exhibited enhanced properties in comparison with those of paraffin oil. In addition, both of the unsaturated oils (castor oil and vegetable oil 1) enhanced physical and mechanical properties in comparison with saturated paraffin oil. CNSL exhibited the best adhesion properties against mild steel and galvanized iron substrates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1574–1578, 2003  相似文献   

17.
使用硅烷偶联剂表面处理的木粉(MW)和未改性木粉(UW)填充不饱和聚酯树脂(UPR)制备了复合材料.研究了表面改性处理和木粉粒径对复合材料力学强度的影响.结果表明,相对于未改性的木粉,用硅烷偶联剂处理的木粉对不饱和聚酯树脂有更强的增强作用,添加量为20(wt)%的MW/UPR复合材料的拉伸强度比纯UPR提高74.4%,...  相似文献   

18.
A facile method is developed to synthesize silicone‐toughened unsaturated polyester (SUP‐M) by monomer copolymerization of anhydrides and diols with hydroxyl‐terminated silicone. The structures and molecular weights of the SUP‐M resins were characterized by Fourier transform infrared spectroscopy and gel permeation chromatography, respectively. The gelation time and mechanical properties, including impact strength, flexural strength, and tensile strength, were investigated. The fracture behaviors were studied by scanning electron microscopy, and their glass‐transition temperature and storage modulus were measured by dynamic mechanical analysis. The experimental results showed that the impact strength of SUP‐M can be obviously improved through copolymerization with a small amount of silicone without decreasing its mechanical properties. The impact strength, flexural strength, and tensile strength of SUP‐M‐0.5 are as high as 12.5 KJ m?2, 131 MPa, and 59 MPa, which are increased by 76.1%, 21.2%, and 6.7%, respectively, compared with those of unsaturated polyester. Impacts on SUP‐M with low silicone content produce a large number of evenly and regularly distributed continuous narrow crack bands combined with many evenly distributed branching crazes, which are of great benefit in absorbing a large amount of impact energy. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45562.  相似文献   

19.
The effect of graphite nanosheets on electrical properties, curing behavior, and polymerization shrinkage of unsaturated polyester resin has been investigated. A solution of polystyrene was used as low profile additive to reduce shrinkage. The results showed that graphite nanosheets have been well dispersed/distributed in the unsaturated polyester matrix where they have high aspect ratio and high surface area. Graphite nanosheet exhibited an accelerating effect on the curing of unsaturated polyester and reduced the polymerization shrinkage as low as 3.6%. Despite large reduction of flexural properties by low profile additive, graphite nanosheet considerably increased the flexural strength and modulus of unsaturated polyester/low profile additive by 47 and 103%, respectively. Therefore, graphite nanosheet can be used as a new low profile additive for unsaturated polyester resins where it is also able to improve mechanical properties and curing rate.  相似文献   

20.
雷文  杨涛  任超 《中国塑料》2006,20(12):23-27
研究了不饱和聚酯树脂(UP树脂)/苎麻布/碱式硫酸镁晶须复合材料的力学性能,探讨了苎麻布、晶须加入量对复合材料力学性能及热稳定性的影响,分析了复合材料的冲击断裂形貌。研究表明:当复合材料中苎麻布的质量恒定为UP树脂质量的7%时,增加晶须的含量,复合材料的弯曲模量及热稳定性随之增加,弯曲强度逐渐下降,拉伸强度及冲击强度先增加而后降低,当晶须加入量为10%时,拉伸强度及冲击强度均达到最大值,分别为30.16MP8和6.07kJ/m^2;当复合材料中晶须的质量恒定为UP树脂质量的10%时,增加复合材料中苎麻布的含量,复合材料的力学性能均随之增加,但热稳定性却下降。UP树脂/苎麻布/晶须复合材料的断面既有晶须裸露,又有卷曲的苎麻纤维分布,但苎麻布对冲击强度的贡献更突出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号