首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new aromatic tetrafunctional methacrylate monomer, 1,4‐di(2‐hydroxy‐3‐methacryloyloxypropoxy) phenol, and its application for the synthesis of porous microspheres have been presented. It was copolymerized with trimethylolpropane trimethacrylate in the presence of pore‐forming diluents mixture (chlorobenzene and 1‐decanol). The results indicate that composition of diluents mixture influence porous structure of copolymers. The porous structure of the copolymer obtained in the presence of 50% chlorobenzene was studied in detail. The results show that pore volume and the most probable pore size diameters determined for the copolymer in the dry and in the wetted states are different. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
The synthesis of a new monomer, 2,3‐(2‐hydroxy‐3‐methacryloyloxypropoxy)naphthalene, and its copolymerization with divinylbenzene is presented. This monomer was obtained from naphthalene‐2,3‐diol in a two‐step synthesis. Copolymers in the form of porous microspheres were prepared by a suspension‐emulsion polymerization method. As pore‐forming diluents, toluene, 1‐decanol, benzyl alcohol, and their mixtures were used. In studies of their porous structure, two methods were used: the adsorption of nitrogen at low temperatures, which provided information about the porous structure of the material in a dry state, and inverse exclusion chromatography, which provided information about the porous structure of the polymer swollen by a good solvent. The obtained results suggest that the porous structures for the dry and swollen polymers were different. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1886–1895, 2006  相似文献   

3.
The utilization of conducting emeraldine salt (PANI‐ES) and intrinsic leucoemeraldine polyaniline (PANI‐LEB) in the synthesis of DGEBA‐grafted PANI via anionic copolymerization is described. The structures of copolymers obtained were characterized by FTIR, 13C and 1H NMR. The extent of grafting was verified by THF Soxhlet (solvent extraction). The thermal properties of these new copolymers were described and their conductivities were reported. Results obtained indicated that the graft copolymer exhibited higher electrical and thermal conductivities than that of the blend counterpart. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
The biomedical applications of poly(ε‐caprolactone) (PCL) were limited for its high hydrophobicity and crystallinity. In this study, we copolymerized CL with amorphous 5‐hydroxyl‐trimethylene carbonate (HTMC) to solve the problem. The 5‐benzyloxy‐trimethylene carbonate (BTMC) was synthesized to copolymerize with CL, then hydrogenolyzed to obtain hydroxyl pendant groups. A serial of copolymers with different BTMC molar ratio were synthesized and their chemical structures and thermal properties were thoroughly studied with NMR, FT‐IR, GPC, XRD, DSC, and TGA. Finally we examined the water contact angle of the copolymers. DSC and XRD results showed that the PCL segments in the copolymers crystallized below 16.8%. BTMC molar content and the crystallinity of the copolymers increased after hydrolysis. With the introduced hydroxyl pendant groups, the deprotected copolymers improved their hydrophilic property significantly, and the copolymer with 9.3% HTMC molar content had static water contact angle as low as 36.5°. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
The aim of this work was to prepare a new group of aromatic methacrylate monomers, utilise them in preparation of porous microspheres and study the influence of their chemical structure on the textural properties of porous methacrylate microspheres. Polymeric microspheres were prepared by suspension-emulsion polymerisation of four aromatic monomers: methacryloiloxybenzene, 1,2-dimethacryloiloxybenzene, 1,3-dimethacryloiloxybenzene and 1,4-dimethacryloiloxybenzene with another crosslinking agent—trimethylolpropane trimethacrylate. Mass median diameters of obtained beads are in the range 22–35 μm. The polymerisation reactions were carried out in the presence of a pore forming diluent. The influence of the diluent system on the porous structure of microspheres was studied in detail. To determine the textural properties of the studied microspheres, nitrogen adsorption–desorption and inverse sized exclusion chromatography measurements were used. Specific surface area of the obtained microspheres achieves value from 185 to 510 m2/g. Since obtained polymeric materials can be used as chromatographic packings for HPLC their porous structure in a swollen state was investigated. Significant differences in the porous structure parameters for dry and swollen microspheres were observed.  相似文献   

6.
Microparticles formed by poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) diblock copolymers containing fluorescein grafted to the polymer chain were synthesized by a Ugi four‐component condensation (UFCC) reaction. To synthesize these copolymers, lactide was first polymerized by a ring‐opening polymerization with alcohol initiators containing functional groups to give carboxyl‐ and aldehyde‐end‐functionalized PLA. Two different fluorescent block copolymers (FCPs) of PEG–PLA conjugated to fluorescein (FCP 1 and FCP 2) were then synthesized by UFCC; they gave yields in the range 65–75%. These copolymers were characterized well according their chemical structures and thermal properties, and we prepared fluorescent microspheres (FMSs) from them with the single emulsion–solvent evaporation method (FMS 1 and FMS 2). A new application of UFCC in the preparation of biomasked drug‐delivery systems is proposed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42994.  相似文献   

7.
Poly(caprolactone‐co‐glycolide)‐co‐poly(ethylene gylcol) copolymers (PCEG) with various composition were synthesized by copolymerization of GA, CL, and PEG. PCEG microspheres were fabricated by oil‐in‐water (o/w) emulsion and solvent‐evaporation technique. Effect of chemical composition on hydrophilicity, crystallinity, and degradation of the PCEG was investigated. It was demonstrated that morphology structure of the microspheres was greatly influenced by chemical composition and hydrophilicity of the PCEG polymer. PCEG microspheres could change from a smooth structure to a regular porous structure and an irregular structure. Moreover, the pore size of them increased with increment of PEG content and length. Cell attachment and growth on the PCEG microspheres were evaluated by using mouse NIH 3T3 fibroblasts as model cells in vitro. The result showed that the PCEG microspheres with large porous structure were more favorable for cell attachment and growth. Thus the PCEG microspheres with rapid degradation rate and large porous structure possess potential use as injectable scaffolds in tissue engineering. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42861.  相似文献   

8.
Acrylic carriers were obtained by aminolysis of nitrile or ester groups in copolymers or terpolymers synthesized from acrylonitrile, acrylic esters and divinylbenzene or ethylene dimethacrylate in the presence of a mixture of inert diluents. The influence of the supermolecular structure of these carriers, generated during the suspension polymerization by adding a mixture of inert diluents, on the carrier properties was observed. Acrylic carriers for immobilization of penicillin acylase should be obtained from either porous or ‘sol’-type copolymers which aquire after aminolysis the structure of expanded gel.  相似文献   

9.
Synthesis of highly crosslinked methacrylate copolymers of in form of microspheres is presented. They are prepared from tetrafunctional methacrylate derivative of bis(4‐hydroxyphenyl)sulfide, bis[4‐(2‐hydroxy‐3‐methacryloyloxypropoxy)phenyl]sulfide (BES‐DM), and divinylbenzene (DVB). In chemical structure of these copolymers exhibit hydroxyl and ester groups of hydrophilic nature. Additionally, copolymer contains sulfur atoms coming from BES‐DM monomer. Porous structure of the copolymers in the dry and wet state was studied. Microspheres possessing the largest pore volume and specific surface area were subjected to chromatographic investigations. The results show that polar functional groups existing in the chemical structure of the studied microspheres have influence on reversed‐phase HPLC retention mechanism. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
1, 4‐bis (4‐amiophenoxy) benzene and 1, 4‐Bis (4‐bromobenzoyl) benzene as monomers, poly(imino ether ketone) (PIEK) was synthesized via palladium‐catalyzed aryl amination reaction. Based on the good chemical and physical properties, big diameter (0.6–2 mm) hollow microspheres of PIEK, used for Inertial Confinement Fusion research, were prepared by using the microliquid technique and double‐layer latex technique. A new double T‐channel droplet generator was designed and developed for fabrication of controlled‐size PIEK hollow microspheres continuously. Study on manipulative condition of diameter and thickness of microspheres was done, and density matching impacting on the quality of shells was discussed. The structures of the PIEK hollow microspheres were characterized, and they possessed equal wall thickness and good spherical symmetry. The properties of the microspheres were detected, and the results showed that they showed good stability under cold environment and high temperature. Additionally, the PIEK hollow microspheres exhibited good mechanical and anti‐irradiation properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
Magnetic, porous poly (tripropylene glycol diacrylate) (PTPGDA) microspheres are successfully prepared using a combination of microfluidic emulsification and free‐radical polymerization. The porous structure can be precisely controlled by controlling the amount of the oil‐phase emulsifier polyglycerol polyricinoleate (PGPR). The effects of PGPR content and pH on the contact angle of the microspheres is investigated. The contact angle of the microspheres increases with the raise of PGPR content, and the hydrophobicity of the microspheres remains stable at different pHs. The microstructure, magnetic properties, and oil adsorption abilities of the microspheres are also studied. The as‐prepared microspheres perform adsorption well, the higher the PGPR content, the more pore structures and larger contact angle occurres on the microspheres, which improves the adsorption capacity. In addition, the adsorption capacity of the microspheres for diesel can reach 3.38 g·g?1 when the mass fraction of PGPR in oil phase is 50% w/v. After adsorbing oil, the microspheres can be separated, recovered, and reused by applying an external magnetic field. The magnetic microspheres have good oil adsorption abilities and recyclability, which shows their potential for use in oil removal.  相似文献   

12.
We report the synthesis of new copolymers from poly(vinyl chloride) (PVC) with 1,2,4‐triazol‐5‐yl‐sulfanyl pendant groups (PVCT) by nucleophilic substitution using microwave energetic sources. By comparing the synthesis of PVCT between microwave and thermal conditions, it was found that the use of microwave‐assisted process led to higher conversion levels than that of the thermal synthesis. Moreover, significant decrease in reaction times was obtained for the microwave assisted synthesis, which avoided secondary reactions. Conversion yields were calculated from elemental analysis and the molecular weighs were analyzed by means of SEC. The molecular structures of the new copolymers were confirmed by FTIR, 13C NMR and 1H NMR spectroscopies. The morphology of the new copolymers was analyzed by SEM. Thermal properties were studied by TGA and DSC techniques. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
The swelling capacity of porous styrene–divinylbenzene (DVB) copolymers in water was studied by displacing methanol from the swollen polymer. The copolymers with different amounts of DVB were prepared in the presence of solvents with different solvating powers as inert diluents. Using a solvating solvent or its mixture with a nonsolvent as diluent, most of the obtained copolymers increase their volume in water, and the increase in volume becomes more significant with increasing the degree of crosslinking in some range of the DVB contents. The swelling capacity in water for the same copolymers with a high degree of crosslinking is linearly dependent on the dilution degree in the initial reaction mixture, to some extent. The unusual swelling behaviors in water were explained by the inner strain, which existed mainly in the less crosslinked domains between the highly crosslinked microgel particles, which are released in the course of swelling of the copolymers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 536–544, 2000  相似文献   

14.
Summary Copolymer beads based on methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDM) were prepared by suspension polymerization technique. Two different solvents, namely toluene and cyclohexane, were used as the diluents in the polymerization system. It was found that toluene produces pores of radii 2 to 10 nm corresponding to the interstices between the nuclei. In the case of cyclohexane as the diluent, formation of large pores with a broad size distribution from 10 to 1000 nm were observed. These sizes correspond to the spaces between the microspheres and the aggregates forming the copolymer beads. The results indicate that, as in porous styrene-divinylbenzene copolymers, the solvating power of the diluent present during the network formation is mainly responsible for the structural characteristics of porous MMA/EGDM copolymer beads.  相似文献   

15.
Uniform poly(glycidyl methacrylate‐divinyl‐benzene) (P(GMA‐DVB)) and poly(glycidyl methacrylate‐ethylene dimethacrylate) (P(GMA‐EGDMA)) porous microspheres with several 10 μm were successfully prepared by membrane emulsification–polymerization technology. Conventional suspension polymerization method was first investigated by examining the effects of recipe components on the morphologies of P(GMA‐DVB), including stabilizer, diluent, and crosslinker to select a optimum recipe. The membrane emulsification–polymerization process was developed to prepare uniform PGMA porous microspheres as the following: the oil phase composed of monomer, diluent and initiator was pressed through membrane pores into the aqueous phase to form uniform droplets, and subsequent suspension polymerization was carried out. GMA and 4‐methyl‐2‐pentanol in the selected recipe were relatively hydrophilic, and therefore oil phase could wet the hydrophilic glass membrane and bring about polydispersed droplets. However, when isooctane was added as a component of diluents, the uniform droplets could be prepared by membrane emulsification method. In the membrane emulsification–polymerization, the coagulation between microspheres obviously decreased while yield of microspheres slightly increased. To extend the application of PGMA, as a trail, uniform P(GMA‐EGDMA) porous microspheres were also successfully prepared by membrane emulsification–polymerization with a isooctane contained diluent, even though EGDMA was more hydrophilic than DVB. Therefore, recipe was found the important factor to prepare uniform PGMA porous microspheres using membrane emulsification–polymerization method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5018–5027, 2006  相似文献   

16.
Polyethersulfone (PES) porous microspheres were prepared via electrospraying technique, and then were used for the removal of endocrine disrupters from aqueous solutions. The surface and the internal structures of electrosprayed microspheres were characterized by scanning electron microscopy (SEM) and the results showed that they were porous. The electrosprayed porous PES microspheres can remove biphenyl A and biphenyl effectively. At the same time, they showed larger adsorption capacity and fast kinetics of uptaking target species than PES injected spheres reported in the earlier publications. The hydrophilicity and porosity of electrosprayed microspheres can be controlled by changing the amount of hydrophilic polyethylene glycol (PEG), which influences the adsorption properties of the microspheres. The results showed that electrosprayed porous PES microspheres have the potential to be used in the environmental application. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
The relationship of water uptake and pore volume has been investigated for porous styrene–divinylbenzene (St–DVB) copolymers prepared in the presence of different inert diluents. It was found that the copolymers prepared in some conditions significantly increased their volume on taking up the water (swelling), and thus the use of water to measure the pore volume of porous St–DVB copolymers could hardly be recommended because the water uptake measurement does not always give a true value of the pore volume in dry state.  相似文献   

18.
Synthesis and physicochemical properties of the new glycidyl methacrylate, styrene, and bis[4(2‐hydroxy‐3‐methacryloyloxypropoxy)phenyl]sulfide terpolymers of different crosslinking degrees are presented. The terpolymers were obtained in the form of regular microspheres by suspension polymerization. The epoxy group content, thermal properties (DSC, thermogravimetric analysis), and swelling characteristic of the functional microspheres were examined. In addition, a selected terpolymer was modified in the epoxide ring opening reaction with diethylenetriamine. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Macroporous styrene‐divinylbenzene copolymers with different degree of crosslinking were prepared by suspension polymerization in presence of different binary mixtures of toluene and heptane, as diluent. Specific surface area, bulk and apparent densities, and pore volume of the resulting beads were determined experimentally. Applying the least square method to the experimental data, correlations for prediction of these properties were obtained. Effects of divinylbenzene concentration, diluent to comonomer volume ratio, and composition of the diluent mixture were considered in developing the aforementioned correlations. The influence of the reaction recipe on porous structure of the samples was also studied using scanning electron microscope (SEM). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
This investigation studied the synthesis of ionic membranes composed of a sulfonated poly(styrene‐isobutylene‐styrene) with novel fluoroblock copolymers. These fluoroblock copolymers were synthesized using three different initiators by Atom Transfer Radical Polymerization (ATRP); two fluoroinitiators were obtained from the esterification of 2‐(perfluoroalkyl) ethanol or octafluoro 4‐4′‐biphenol. The third initiator evaluated was 1‐bromoethyl benzene. The resulting block copolymers were characterized using several techniques: Gel Permeation Chromatography, Nuclear Magnetic Resonance, Fourier Transform Infrared Spectroscopy, Ultraviolet Spectroscopy, Thermogravimetric Analysis, and Differential Scanning Calorimetry. Transport properties (e.g., proton conductivity and methanol permeability) were measured to evaluate their performance for direct methanol fuel cell (DMFC). The choice of ATRP initiator was found to have a profound impact on the thermal stability of the different homopolymers and block copolymers studied. In addition, the chemical nature and symmetry of the initiators can lead to different chemical and electronic transitions, which influence the performance of these ionic membranes in applications such as proton exchange membranes for DMFC applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42046.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号