首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new type of poly(vinyl alcohol)/nitrocellulose/granular activated carbon/KNO3 composite bead was prepared and shown to be suitable for use as a filter material in the biofiltration process. This composite bead was a porous spherical particle with a diameter of 2.4–6.0 mm and a density of 1.125 g/cm3. The amount of water-soluble nitrogen dissolved out of this composite bead was 145.5 mg N/g dry composite bead. The biochemical kinetic behaviors of n-butyl acetate in a spherical poly(vinyl alcohol) (PVA)/nitrocellulose (NC)/granular activated carbon (GAC)/KNO3 composite bead biofilter (NC biofilter) and a spherical PVA/peat/GAC/KNO3 composite bead biofilter (peat biofilter) were investigated. The values of the half-saturation constant K s for the NC biofilter and the peat biofilter were 33.55 and 35.54 ppm, respectively. The values of the maximum reaction rate V m for the NC biofilter and the peat biofilter were 23.83 and 22.46 ppm/s, respectively. Diffusion-limited zero-order kinetics were regarded as the most adequate biochemical reaction model for the two biofilters. The microbial growth rates and biochemical reaction rates for the two biofilters were inhibited at higher inlet concentrations. The biochemical kinetic behaviors of the two biofilters were similar. The maximum elimination capacities of the NC biofilter and the peat biofilter were 170.72 and 174.51 g C/h m3 bed volume, respectively. The PVA/nitrocellulose/GAC/KNO3 composite bead made it easier for the microbes to adjust to their new environment and secrete exocellular enzymes to break down the substrate.  相似文献   

2.
In this study, an optimal process for preparing a synthetic filter material with nitrogen nutrient (PVA/peat/KNO3 composite beads) was developed for biofiltration and the optimal initial nitrogen concentration of the boric acid and phosphate aqueous solutions was found to be 3.94 and 1.52 g nitrogen L?1, respectively. The water‐soluble nitrogen content in the prepared composite beads was higher than that of the compost. The mass transport process for the water‐soluble nitrogen dissolving out of the composite beads occurred in two stages: external mass transport occurred in the early stage and an intraparticle diffusion process occurred in the long‐term stage. The rate of water‐soluble nitrogen dissolving out during the external mass transport process increased with increasing the concentration of KNO3 aqueous solution and that during the intraparticle diffusion process had a maximum value for the composite beads that had been immersed in 0.384 M KNO3. The path of water‐soluble nitrogen dissolving out from the composite beads was that the water‐soluble nitrogen dispersed in the peat phase firstly diffused into the outer poly(vinyl alcohol) (PVA) phase and then it diffused out of the bead surface. The percentage of volatile organic compounds (VOCs) removed by the biofilter from an air stream remained above 99% for 230 days for the composite beads that had been immersed in KNO3 before packing. The microbial growth rate had a maximum value for the composite beads that had been immersed in 0.384 M KNO3 and was higher than that of the compost by a factor of 1.49. The rate of nitrogen dissolving out during the intraparticle diffusion process could be used as an index to predict the microbial growth rate in the biofilter. Copyright © 2005 Society of Chemical Industry  相似文献   

3.
Poly(vinyl alcohol) (PVA)/pig manure compost composite beads proved suitable as a biofilter material in a biofiltration process. The composite bead is a porous spherical particle with a diameter between 2.4 and 6.0 mm and a density of 0.96 g cm?3. It contains 9.43 mg P g?1 dry solid and 12.1 mg N g?1 dry solid. The equilibrium moisture contents of the PVA/compost composite beads bed for adsorption and holding experiments are 50.5% and 54.6% by wet basis, respectively, which correspond to the optimal filter material required and could sustain the biological activity. The PVA/pig manure compost composite beads bed has higher moisture‐holding capacity and compression strength than the pig manure compost bed. The PVA/compost composite beads have buffer capacity and could keep the filter bed at pH 6.9–7.2 during operating. The percentage of ethyl acetate removed could stay at over 99% for 40 days of operation as the PVA/pig manure compost composite beads adsorbed inorganic nitrate nutrient. The maximum elimination capacity of the PVA/pig manure compost composite beads filters at the loading rate of 0.71 kg ethyl acetate m?3‐bed h?1 is 0.71 kg ethyl acetate m?3‐bed h?1. Copyright © 2005 Society of Chemical Industry  相似文献   

4.
In this study, a new type of poly(vinyl alcohol) (PVA)/peat composite bead was prepared and was proved suitable as a filter material in the biofiltration process. The composite bead is a porous spherical particle and has a diameter of 2.4–6.0 mm and a density of 0.69 kg/cm3. It contains 3.25 mg N/g dry solid and 2.91 mg P/g dry solid. The equilibrium moisture content of the composite bead for adsorption and holding experiments is 50.5 and 66.8% by wet basis, respectively. The initial compression strength of the composite bead is 0.32 kg/cm2. It has higher moisture holding capacity and compression strength than pig manure compost filter material. The adsorption behavior of ethyl acetate and composite bead follows the Freundlich adsorption isotherm. The composite bead has buffer capacity and could keep the filter bed at pH = 6.9–7.2 during operating. The percentage of removed ethyl acetate was 99% for up to 33 days as the composite bead adsorbed nutrients. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3248–3255, 2003  相似文献   

5.
An innovative spherical poly(vinyl alcohol)(PVA)/peat/clay porous composite bead was prepared and shown to be suitable for use as an adsorbent. The mass transport process for the adsorption of metal ions onto this composite bead in an aqueous system was investigated. In the external mass transport process, the diffusion coefficient (D1) of Cu+2 and Zn+2 ions increased with increasing initial metal ion concentration and the increasing effect was more pronounced in the initial metal ion concentrations range of 18?×?10-3 to 22?×?10-3?M. The diffusion rate of Zn+2 ions was faster than that of Cu+2 ions. In the intraparticle diffusion process, the diffusion coefficient (D2) decreased with increasing initial metal ion concentration in the initial concentration range of 1?×?10-3 to 4?×?10-3?M, and the value of D2 maintained an almost constant value in the initial concentration range of 8?×?10-3 to 22?×?10-3?M. The rate of ion diffusion within the adsorbent for Cu+2 ions was faster than that for Zn+2 ions. The adsorption mechanism was controlled by the intraparticle diffusion process. The adsorption followed the Langmuir adsorption isotherm model. The maximum amount of adsorbed metal ions for Cu+2 and Zn+2 ions were 22.57 and 13.62?mg/g composite bead, respectively.  相似文献   

6.
A new type of poly(vinyl alcohol)(PVA)/peat/organoclay composite beads was prepared. This composite bead was a porous spherical particle with a diameter of 3.0–5.0 mm and a porosity of about 50%. The oragnoclay is prepared by hexadecyl trimethyl ammonium bromide (HDTMA) exchanged clay. The dynamic adsorption behavior between methyl ethyl ketone (MEK) and this composite bead was investigated. The adsorption process occurs in two stages with external mass transport occurring in the early stage and intraparticle diffusion occurring in the later stage. The rate of MEK diffusion in the external mass transport process and the intraparticle diffusion process in the adsorption temperature 20–35 °C was 3.28–76.98 × 10−8 cm2/s and 1.62–3.17 × 10−7 cm2/s, respectively. The rate of MEK diffusion in both processes was concentration independent, and it increased with increasing the adsorption temperature. Langmuir isotherm adsorption model was more suitable for describing the adsorption equilibrium of MEK. The calculated Q values in the adsorption temperature 20–35 °C were 5.90–22.78 mg/g composite bead. The adsorption capacity of this composite bead increased with increasing the adsorption temperature. The adsorption process was physical adsorption, endothermic and non-spontaneous process.  相似文献   

7.
This paper describes the development and simulation of an unsteady state biofilter model used to predict dynamic behaviour of cyclically‐operated biofilters and compares it with experimental results obtained from three, parallel, bench‐scale biofilters treating both periodically fluctuating concentrations and constant concentrations of an α‐pinene‐laden gas stream. The dynamic model, using kinetic parameters estimated from the constant concentration biofilter, was able to predict the performance of cyclic biofilters operating at short cycle periods (ie, in the order of minutes and hours). Steady state kinetic data from a constant concentration biofilter can be used to predict unsteady state biofilter operation. At a 24 h cycle period, the dynamic model compared well with experimental results. For long cycle periods (ie, hours and days), removal efficiency decreased after periods of non‐loading: the longer the period of non‐loading, the poorer the biofilter's performance at the re‐commencement of pollutant loading. At longer time scales the model did not effectively predict transient behaviour, as adsorption and changes in kinetic parameters were not accounted for. Modelling results showed that similar biofiltration performance for the cyclic and constant concentration biofiltration of α‐pinene is expected for biofilters operating solely in the first order kinetics regime. Poorer performance for cyclic biofilters following Monod kinetics spanning the entire kinetics range is expected as the cycle amplitude increases. The most important parameters affecting the performance of a cyclically‐operated biofilter with short cycle periods are: amplitude of cyclic fluctuations, Cg, max/Cg, relative value of the half‐saturation constant in the Monod expression, Ks, and effective diffusivity of α‐pinene in the biofilm, De. Copyright © 2005 Society of Chemical Industry  相似文献   

8.
Thiol-functionalized mesoporous poly (vinyl alcohol)/SiO2 composite nanofiber membranes and pure PVA nanofiber membranes were synthesized by electrospinning. The results of Fourier transform infrared (FTIR) indicated that the PVA/SiO2 composite nanofibers were functionalized by mercapto groups via the hydrolysis polycondensation. The surface areas of the PVA/SiO2 composite nanofiber membranes were >290 m2/g. The surface areas, pore diameters and pore volumes of PVA/SiO2 composite nanofibers decreased as the PVA content increased. The adsorption capacities of the thiol-functionalized mesoporous PVA/SiO2 composite nanofiber membranes were greater than the pure PVA nanofiber membranes. The largest adsorption capacity was 489.12 mg/g at 303 K. The mesoporous PVA/SiO2 composite nanofiber membranes exhibited higher Cu2+ ion adsorption capacity than other reported nanofiber membranes. Furthermore, the adsorption capacity of the PVA/SiO2 composite nanofiber membranes was maintained through six recycling processes. Consequently, these membranes can be promising materials for removing, and recovering, heavy metal ions in water.  相似文献   

9.
Using Na+ form of perfluorosulfonic acid (PFSA) and poly(vinyl alcohol) (PVA) as coating materials, polysulfone (PSf) hollow fiber ultrafiltration membrane as a substrate membrane, PFSA‐PVA/PSf hollow fiber composite membrane was fabricated by dip‐coating method. The membranes were post‐treated by two methods of heat treatment and by both heat treatment and chemical crosslinking. Maleic anhydride (MAC) aqueous solution was used as chemical crosslinking agent using 0.5 wt % H2SO4 as a catalyst. PFSA‐PVA/PSf hollow fiber composite membranes were used for the pervaporation (PV) separation of isopropanol (IPA)/H2O mixture. Based on the experimental results, PFSA‐PVA/PSf hollow fiber composite membrane is suitable for the PV dehydration of IPA/H2O solution. With the increment of heat treatment temperature, the separation factor increased and the total permeation flux decreased. The addition of PVA in PFSA‐PVA coating solution was favorable for the improvement of the separation factor of the composite membranes post‐treated by heat treatment. Compared with the membranes by heat treatment, the separation factors of the composite membranes post‐treated by both heat treatment and chemical crosslinking were evidently improved and reached to be about 520 for 95/5 IPA/water. The membranes post‐treated by heat had some cracks which disappeared after chemical crosslinking for a proper time. Effects of feed temperature on PV performance had some differences for the membranes with different composition of coating layer. The composite membranes with the higher mass fraction of PVA in PFSA‐PVA coating solution were more sensitive to temperature. It was concluded that the proper preparation conditions for the composite membranes were as follows: firstly, heated at 160°C for 1 h, then chemical crosslinking at 40°C for 3 h in 4% MAC aqueous solution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Two identical laboratory‐scale biotrickling filters, filled with different ceramic materials, were operated in order to investigate the removal of xylene from a waste gas stream. The biotrickling filter columns were seeded with pure bacteria identified as Bacillus firmus, which can utilize xylene as the sole carbon and energy source. The purification performance of the biotrickling filters was examined for xylene inlet concentrations Cg ≤ 3000 mg/m3 at different gas flow rates of 0.2 m3/h, 0.6 m3/h, and 1 m3/h, which correspond to gas empty bed residence times (EBRTs) of 84.8 s, 28.3 s, and 17.0 s, respectively. Both biofilters displayed a removal efficiency of no less than 95 % with the inlet xylene less than 3000 mg/m3 at the EBRTs of 84.8 and 28.3 s. When EBRT decreased to 17.0 s, the biofilter filled with ceramic particle type 2 had a better performance. The flow rate of trickling liquid has little effect on the removal efficiencies of the two filters. In the case of uneven distribution of trickling liquid in the packing materials, the performance of the biofilter can be improved by increasing the nitrogen nutrient supplement. Biomass quantity decreases as the depth of packing material increases in both biofilters, but the biofilter filled with ceramic particle type 1 had more alive bacteria per unit mass of packing material than the other.  相似文献   

11.
Polyvinyl alcohol (PVA)/regenerated silk fibroin (SF)/AgNO3 composite nanofibers were prepared by electrospinning. A large number of nanoparticles containing silver were generated in situ and well‐dispersed nanoparticles were confirmed by transmission electron microscopy (TEM) intuitionally. Ultraviolet (UV)‐visible spectroscopy and X‐ray diffraction (XRD) patterns indicated that nanoparticles containing Ag were present both in blend solution and in composite nanofibers after heat treatment and after subsequent UV irradiation. By annealing the nanofibers, Ag+ therein was reduced so as to produce nanoparticles containing silver. By combining heat treatment with UV irradiation, Ag+ was transformed into Ag clusters and further oxidized into Ag3O4 and Ag2O2. Especially size of the nanoparticles increased with heat treatment and subsequent UV irradiation. This indicated that the nanoparticles containing silver could be regulated by heat treatment and UV irradiation. The antimicrobial activity of heat‐treated composite nanofibers was evaluated by Halo test method and the resultant nanofibers showed very strong antimicrobial activity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
A series of polyvinyl alcohol (PVA)/graphene oxide (GO)-sodium alginate (SA) nanocomposite hydrogel beads were prepared through in situ crosslinking for Pb2+ removal. It was found that PVA and SA molecules were intercalated into GO layers through hydrogen bonding interactions, leading to the destruction of orderly structure of GO, while GO uniformly distributed in PVA matrix. With increasing PVA solution concentration, the hydrogel beads became more regular, a large number of polygonal pores with thin walls and open pores formed, the average pore size decreased, and the dense network structure formed. Meanwhile, the permeability of the composite hydrogel decreased, leading to the decline of Pb2+ adsorption capacity of the composite hydrogel. With increasing GO content, the ballability of the hydrogel beads was weakened, the pore size increased, and relatively loose network structure formed, resulting in an increase in permeability and Pb2+ adsorption capacity of the hydrogel, reaching up to 279.43 mg g−1. Moreover, the composite hydrogel presented relatively good reusability for Pb2+ removal. The adsorption mechanism was explored and showed that the adsorption system of the composite hydrogel belonged to the second-order kinetic model and fitted Langmuir adsorption isotherm model for Pb2+ removal, which might be mono-layer chemical adsorption. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47318.  相似文献   

13.
Ozone has been shown to be effective in the transformation of several chemicals of emerging concern that escape the wastewater treatment process, but there is concern whether toxic transformation products are formed. Two parallel biofilter columns with granular activated carbon (GAC) and filter sand following a pilot-scale ozone unit to treat secondary treated municipal wastewater were studied. Results show reduced wastewater genotoxicity following ozonation and further reduction following biofiltration. The BAC biofilter outperformed the sand biofilter in terms of reduction in both organics and genotoxicity. Biofilter performance correlated with biological indicators (dissolved oxygen reduction and effluent E. coli counts) but not with ATP bioactivity measurements. Limited bacterial (E. coli) regrowth was observed in treated effluent from both biofilters.  相似文献   

14.
《分离科学与技术》2012,47(18):3070-3081
ABSTRACT

A novel magnetic composite prepared from Fe3O4, poly(vinyl alcohol) and alkaline pretreated spent coffee grounds (Fe3O4/PVA/APSCGs) was utilized for the first time as an adsorbent for adsorption of Pb(II) ions after carefully characterizing it by various techniques (XRD, FTIR, SEM, EDX). The obtained results indicated that the adsorption was spontaneous, endothermic, fitting well with both Langmuir and Freundlich models, and more suitable to be described by the second-order kinetic model. The maximum adsorption capacity of Fe3O4/PVA/APSCGs for Pb(II) at optimum conditions (pH of 5, contact time of 24 h, APSCGs:Fe3O4 weight ratio of 4:1) was found to be 0.275 mmol.g?1. Recycling study showed a good reusability of the composite with removal efficiency maintained at 78.12% after five continuous adsorption-desorption cycles.  相似文献   

15.
Nanocomposite films for food packaging applications were developed using bacterial cellulose (BC) nanofibers in different amount in a poly(vinyl alcohol)/starch (PVA/St) matrix. In search of a better method to reduce the harmful ingredients in food packaging, the cellulose nanofibers were obtained by the mechanical defibrillation of BC pellicles thus avoiding the addition of chemicals in the final packaging material. Improved mechanical performances were obtained starting from just 1% BC nanofibers in PVA/St. Atomic force microscopy images showed a uniform dispersion of BC nanofibers on the surface of nanocomposites. A twofold increase of both tensile strength and modulus was obtained for 2 wt % BC in the composite. BC nanofibers have greatly improved the barrier properties of PVA/St matrix, a twofold increase of water vapor permeability being obtained for only 2 wt % BC nanofibers in the composite film. PVA/St/2BC was proposed as a high potential material for food packaging applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45800.  相似文献   

16.
The removal of high concentrations of H2S from waste gases containing mixtures of H2S and NH3 was studied using the pilot‐scale biofilter. Granular activated carbon (GAC), selected as support material in this study, demonstrated its high adsorption capacity for H2S and good gas distribution. Extensive tests to determine removal characteristics, removal efficiency, and removal capacity of high H2S levels and coexisting NH3 in the system were performed. In seeking the appropriate operating conditions, the response surface methodology (RSM) was employed. H2S removal capacities were evaluated by the inoculated bacteria (biological conversion) and BDST (Bed Depth Service Time) methods (physical adsorption). An average 98% removal efficiency for 0.083–0.167 mg dm?3 of H2S and 0.004–0.021 mg dm?3 of NH3 gases was achieved during the operational period because of rapid physical adsorption by GAC and subsequently an effective biological regeneration of GAC by inoculated Pseudomonas putida CH11 and Arthrobacter oxydans CH8. The results showed that H2S removal efficiency for the system was not affected by inlet NH3 concentrations. In addition, no acidification was observed in the BAC biofilter. High buffer capacity and low moisture demand were also advantages of this system. The maximal inlet loading and critical loading for the system were 18.9 and 7.7 g‐H2S m?3 h?1, respectively. The results of this study could be used as a guide for the further design and operation of industrial‐scale systems. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
Poly(vinyl alcohol) (PVA) hydrogels with tissue-like viscoelasticity, excellent biocompatibility, and hydrophilicity have been considered as promising cartilage replacement materials. However, the low mechanical properties of pure PVA hydrogels limit their applications for bearing complicated loads. Herein, we report silicon dioxide (SiO2)/PVA composite hydrogels fabricated by fabricated cyclically freezing/thawing the aqueous mixture of PVA and methyltrimethoxysilane (MTMS). MTMS hydrolyzes and forms SiO2 particles in situ to reinforce PVA hydrogel. Meanwhile, silanol group condenses with hydroxyl groups of PVA and chemically bonds with PVA. The resulting SiO2/PVA hydrogels exhibit much better mechanical properties than bare PVA hydrogel. In addition, the composite hydrogels keep very low swellable property. This prepared composite hydrogels are promising in a variety of biomedical applications such as artificial articular cartilage, drug delivery, and biosensors. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46895.  相似文献   

18.
Konjac glucomannan(KGM)/poly(vinyl alcohol)(PVA)/Na+ modified rectorite (Na+REC) nanocomposite films were obtained by using a casting/solvent evaporation method. The structures and microstructures of KGM/PVA/Na+REC composite films were analyzed by FTIR, XRD, SEM and TEM. A wide variety of material characteristics for the KGM/PVA/Na+REC composite films were investigated, including the mechanical property, optical transmittance and thermal stability. The results revealed that by adding PVA more well-intercalative/exfoliated structure of composite film was obtained. As a result, the KGM/PVA/Na+REC composite film at low Na+REC and PVA content exhibited an improvement in mechanical properties and thermal stability due to a reinforcement effect. In vitro drug-controlled release studies showed a slower and more continuous release for KGM/PVA/Na+REC composite film in comparison with KGM/Na+REC composite film.  相似文献   

19.
Poly(vinyl alcohol) (PVA), PVA/nanocellulose fiber (CNF), and PVA/CNF/graphene oxide (GO) films were prepared simply by casting stable aqueous mixed solutions. FTIR investigation indicated that hydrogen bonding existed between the interface of GO and PVA‐CNF. Scanning electron microscopy and X‐ray diffraction analysis showed that GO was uniformly dispersed in PVA‐CNF matrix. Introducing CNF into PVA caused a significant improvement in tensile strength, and further incorporating GO into PVA/CNF matrix led to a further increase. The tensile strength of the neat PVA film, PVA/CNF composite, and PVA/CNF/GO film (0.6 wt % GO) was 43, 69, and 80 MPa, respectively. Moreover, when incorporating 8 wt % CNF into PVA matrix, O2 permeability and water absorption decreased from 13.36 to 11.66 cm3/m2/day and from 164.2% to 98.8%, respectively. Further adding 0.6 wt % GO into PVA/CNF matrix resulted in a further decrease of permeability and water absorption to 3.19 cm3/m2/day and 91.2%, respectively. Furthermore, for all composite samples, the transmittance of visible light was higher than 67% at 800 nm. CNF and GO‐reinforced PVA with high mechanical and barrier properties are potential candidates for packaging industry. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45345.  相似文献   

20.
The work reported here describes the aerobic biodegradation of reduced sulfur compound mixtures in air streams by biofilters. Rates of removal of hydrogen sulfide as a sole substrate and in the presence of organo‐sulfur compounds were determined to see if there were any inhibitory effects of the organo‐sulfur compounds on the rate of hydrogen sulfide removal. Experiments were conducted in three bench‐scale biofilters packed with the mixtures of compost/perlite (4:1), hog fuel/ perlite (4:1), and compost/hog fuel/perlite (2:2:1), respectively. Hydrogen sulfide, the predominant odorous gas produced from kraft pulping processes, was used as the main pollutant (substrate). Other organo‐sulfur species (dimethyl sulfide and dimethyl disulfide), also emitted from kraft pulp mills, were used as competing (secondary) substrates in the waste gas stream. To describe rates of removal a Michaelis–Menten type kinetic equation was modified to incorporate the plug flow behavior of biofilters, and used in evaluating the pseudo‐kinetic parameters, Vmax (the maximum removal rate) and Km (the half saturation concentration), for hydrogen sulfide biodegradation, and the type of macrokinetic competition between hydrogen sulfide and the organo‐sulfur compounds. No significant differences in V max for the three biofilters were observed. The V max ranged between 136 and 147 g m−3 h −1, while the Km varied from 44 to 59 ppmv for the three biofilters. Hydrogen sulfide elimination capacity was not affected by the presence of any of the organo‐sulfur species in all of the three biofilters, confirming earlier results that hydrogen sulfide removal in biofilters is independent of the presence of organo‐sulfur compounds mainly because of its easy biodegradability. © 1999 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号