首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solvothermal process was successfully developed to graft dibutylmaleate (DBM) onto poly(ethylene‐co‐1‐octene) (POE) with dicumyl peroxide (DCP) as free radical‐initiator. FTIR spectra demonstrate that DBM is successfully grafted onto the backbone of POE by this novel method. The influences of DBM content, DCP concentration, POE concentration, reaction temperature and reaction time on the grafting copolymerization have been investigated in detail through grafting degree (GD). It is worthy to indicate that high grafting degree (above 15%) can be achieved through the one‐pot way when the graft reaction is carried out in 40 mL toluene at 150°C for 5 h with 1.6 g DBM, 6–8 g POE and 0.35 g DCP. This developed solvothermal process is becoming an effective way to prepare POE‐g‐DBM graft copolymers, and can be extended to other systems. In addition, TGA results show that the thermal properties of POE are enhanced after the grafting reaction. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Process parameters of poly (ethylene‐co‐vinyl acetate) (EVA)‐modified poly (ethylene‐co‐1‐octene) (POE)‐interpenetrating, double network blend was designed through Taguchi L9 orthogonal array as a novel approach for complete optimization of engineering and solvent‐swelling properties. Influence of different factors like EVA and peroxide concentrations, blending temperature, and blending time on gel content, tensile modulus, tensile strength, ultimate elongation were statistically calculated. Results showed good correlation between mathematical and physical inferences. Stress relaxation, hysteresis and other physico‐mechanicals like total elongation, solvent‐swelling, etc., were interestingly depended upon the nature of dominantly crosslinked phase instead of net crosslinking of the network hybrids. Sorption, on the other hand, depended on the hydrophobic‐hydrophilic property of the surfaces. The series of data produced finally helped to select the best process parameters under which a particular POE‐EVA blend composition yielded most balanced physico‐mechanicals. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Conducting composites of aniline/o‐anisidine copolymer doped by dodecylbenzenesulfonic acid (P(An‐co‐oAs)‐DBSA), linear low‐density polyethylene (LLDPE), and ethylene–acrylic acid copolymer (EAA) as compatibilizer were prepared by melt processing. The effects of composition on electrical conductivity, resistivity‐temperature characteristic, and mechanical properties were also investigated. The electrical conductivity of ternary composites markedly increased due to compatibilizition and protonation effect of the EAA. The SEM micrograph shows that the compatibility between the P(An‐co‐oAs)‐DBSA and the LLDPE matrix is enhanced after the introduction of EAA. The positive temperature coefficient of resistivity characteristic is observed. Tensile strength of P(An‐co‐oAs)‐DBSA/LLDPE/EAA composites is improved, compared with P(An‐co‐oAs)‐DBSA/LLDPE composites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1511–1516, 2005  相似文献   

4.
In this article, the phase morphology and rheological properties of polypropylene (PP)/poly(ethylene‐co‐octene) (POE) blends with a droplet‐matrix microstructure were studied by scanning electron microscopy and rheological experiments. The data were analyzed to yield the variations of rheological behavior with blend composition and insight into the microstructure of PP/POE blends. The Palierne's emulsion type model was used to extract information on rheological properties, and the interfacial tensions between the PP and POE were determined by fitting the experimental data with this model. The results indicated that the interfacial tensions were shown to depend on blend composition and temperature. Rheological properties of PP/POE blends were investigated in a systemic way with varying shear histories. The results showed that shear history had an important effect on the rheological properties of the blends due to the dispersed phase (POE) domains refined with increasing preshear rate and preshear time. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

5.
In this work, ethylene‐co‐vinyl acetate (EVA), poly(ethylene‐co‐octene) (POE), and poly(vinyl chloride) (PVC) blends were processed in a molten state process using a corotating twin‐screw extruder to assess both the balance of mechanical properties and physical interactions in the melt state. Tensile measurements, scanning electron microscopy, and oscillatory rheometry were performed. By means of flow curves, the parameters of the power law as well as the distribution of relaxation times were assessed with the aid of a nonlinear regularization method. The mechanical properties for the EVA‐POE blend approximated the values for POE, while inclusion of PVC shifted the modulus values to those of neat EVA. The rise in modulus was corroborated by the PVC phase dispersion as solid particles that act as a reinforcement for the ternary blend. The rheological properties in the molten state show that the POE does not present molecular entanglement effects and so tends both to diminish the EVA mechanical properties and increase the fluidity of the blend. However, the addition of PVC both restored the EVA typical pseudoplastic feature and promoted the increase in the viscosity and the mechanical properties of the ternary blend. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Blends of poly(ethylene‐co‐vinyl alcohol) (EVOH) with maleic anhydride‐grafted‐poly(ethylene‐octene) (POE‐g‐MAH) were prepared by blending extrusion in order to improve the toughness and flexibility of EVOH. The compatibility behavior of these blends with POE‐g‐MAH content range from 0 to 25 wt% was studied using mechanical, thermal, infrared, and morphology characterization techniques. The mechanical test results showed that POE‐g‐MAH can significantly improve the impact toughness of EVOH with a brittle‐tough transition appeared at the POE‐g‐MAH content of 20 wt%. A huge increase of toughness of the blend was also observed when the POE‐g‐MAH content was increased to 15 wt%. The thermal analysis of the blends demonstrated that the thermal stability of EVOH is improved with the addition of POE‐g‐MAH, adding 20 wt% or more POE‐g‐MAH can effectively decrease the crystallinity of EVOH and greatly improve compatibility between the two components. The existence of esterification between anhydride groups in POE‐g‐MAH and hydroxyl groups in EVOH in melt processing was confirmed using Fourier transform infrared technique. Morphology analysis of the Izod impact fractures has clearly shown the mechanisms for these blends to change from brittle to tough with increasing the POE‐g‐MAH content. POLYM. ENG. SCI., 53:2093–2101, 2013. © 2013 Society of Plastics Engineers  相似文献   

7.
Propylene random copolymer (PPR)/styrene‐ethylene‐butylene‐styrene block copolymer (SEBS)/compatibilizer/organic‐montmorillonite (OMMT) quaternary nanocomposites and PPR/compatibilizer/OMMT ternary nanocomposites were prepared via two‐stage melt blending and influences of compatibilizers, maleic anhydride (MA) grafted styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA), poly(octene‐co‐ethylene) (POE‐g‐MA), or propylene block copolymers (PPB‐g‐MA), on rheology and mechanical properties of the nanocomposites were investigated. The results of X‐ray diffraction measurement and transmission electron microscopy observation showed that OMMT layers were mainly intercalated in the nanocomposites except for the mainly exfoliated structure in the quaternary nanocomposites using POE‐g‐MA as compatibilizer. The nanocomposites exhibited pseudo‐solid like viscoelasticity in low frequencies and shear‐thinning in high shear rates. As far as OMMT dispersion was concerned, POE‐g‐MA was superior to SEBS‐g‐MA and PPB‐g‐MA, which gives rise to the highest viscosities in both the ternary and quaternary nanocomposites. The quaternary nanocomposites containing POE‐g‐MA were endowed with balanced toughness and rigidity. It was suggested that a suitable combination of compatibilizer and SEBS was an essentially important factor for adjusting the OMMT dispersion and distribution, the rheological and mechanical performances of the nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
On purpose to examine the effect of branch length on the miscibility of polyolefin blends, miscibility behavior of linear polyethylene/poly(ethylene‐co‐1‐octene) blend was studied and compared to that of linear polyethylene/poly(ethylene‐co‐1‐butene) blend. Miscibility of the blend was determined by observing the morphology quenched from the melt, and by using the relation between interaction parameter and copolymer composition. When the weight composition and molecular weight was the same, poly(ethylene‐co‐1‐octene) was slightly more miscible with linear polyethylene than poly(ethylene‐co‐1‐butene) was. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
High performance thermoplastic elastomers based on ethylene‐vinyl acetate rubber (EVM) and ternary polyamide copolymer (tPA) were prepared through a dynamic vulcanization process in the presence of dicumyl peroxide (DCP). The morphology, crystallization, and mechanical properties of the EVM/tPA blends were studied. A phase transition of EVM/tPA blend was observed at a weight ratio of 60/40. The presence of EVM increased the melting enthalpy at the high temperature of tPA, ascribing to the heterogeneous nucleating effect of EVM. The tensile strength of EVM/tPA (70/30) blends was increased up to 20.5 MPa as the DCP concentration increased to 3.5 phr, whereas the elongation at break of the blends kept decreasing as the DCP concentration increased. The addition of ethylene‐acrylic acid copolymer (EAA) or maleic anhydride‐grafted EVM (EVM‐g‐MAH) to the EVM/tPA blends both induced finer dispersion of the EVM particles in the tPA phase and improvement in the tensile strength and elongation at break of the blends, which were ascribed to the compatibilization of EAA or EVM‐g‐MAH. Finally, a high performance EVM/tPA (70/30) thermoplastic elastomer with Shore A hardness of 75, tensile strength of 24 MPa, elongation at break of 361%, and set at break of 20% was obtained by adding 5 wt % of EVM‐g‐MAH and 3.5 phr DCP. It has great potential in automotive and oil pipeline applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
New polymer blends of polypropylene random copolymer (PP‐R) and poly(ethylene‐octene) (POE) were prepared by melt‐blending process using a corotating twin‐screw extruder. The POE content was varied up to 35%. The toughening efficiency of POE for PP‐R was evaluated by the mechanical properties of the resulted PP‐R/POE blends. The crystallization behavior and morphology of the blends were also studied. Results show that POE acts as nucleation agent to induce the crystallization of PP‐R matrix at higher crystallization temperature. Super‐toughened PP‐R/POE blends (Izod impact strength more than 500 J/m) can be readily achieved with only 10 wt % of POE. The high toughness of PP‐R/POE is attributed to cavitation and shear yielding of matrix PP‐R, as revealed by the morphology studies. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
In this research, the reinforcement of polypropylene (PP) was studied using a new method that is more practical for synthesizing polypropylene‐block‐poly(ethylene‐propylene) copolymer (PP‐co‐EP), which can be used as a rubber toughening agent. This copolymer (PP‐co‐EP) could be synthesized by varying the feed condition and changing the feed gas in the batch reactor system using Ziegler–Natta catalysts system at a copolymerization temperature of 10°C. The 13C‐NMR tested by a 21.61‐ppm resonance peak indicated the incorporation of ethylene to propylene chains that could build up the microstructure of the block copolymer chain. Differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and dynamic mechanical analysis (DMA) results also confirmed these conclusions. Under these conditions, the morphology of copolymer trapped in PP matrix could be observed and the copolymer Tg would decrease when the amount of PP‐co‐EP was increased. DMA study also showed that PP‐co‐EP is good for the polypropylene reinforcement at low temperature. Moreover, the PP‐co‐EP content has an effect on the crystallinity and morphology of polymer blend, i.e., the crystallinity of polymer decreased when the PP‐co‐EP content increased, but tougher mechanical properties at low temperature were observed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3609–3616, 2007  相似文献   

12.
In this work, a series of polypropylene/poly(ethylene‐co‐propylene) (iPP/EPR) in‐reactor alloys were prepared by MgCl2/TiCl4/diester type Ziegler‐Natta catalyst with triethylaluminium/triisobutylaluminium (TEA/TIBA) mixture as cocatalyst. The influence of cocatalyst and external electron donor, e.g., diphenyldimethoxysilane (DDS) or dicyclopentyldimethoxysilane (D ‐donor), on the structure and mechanical properties of iPP/EPR in‐reactor alloys were studied and discussed. According to the characterization results, PP/EPR was mainly composed of random poly(ethylene‐co‐propylene), segmented poly(ethylene‐co‐propylene), and high isotactic PP. Using TEA/TIBA mixture as cocatalyst and DDS as external electron donor, as TEA/TIBA ratio increased, the impact strength of iPP/EPR in‐reactor alloys had an increasing trend. Using TEA/TIBA mixture as cocatalyst and D ‐donor as external electron donor, the impact strength of iPP/EPR in‐reactor alloy were dramatically improved. In this case, the iPP/EPR in‐reactor alloy prepared at TEA: TIBA = 4 : 1 was the toughest. The influence of cocatalyst and external electron donor on the flexural modulus and flexural strength could be ignored. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Nanocomposite of thermoplastic elastomer ethylene‐octene copolymer/maleated ethylene‐octene (POE/POE‐g‐MAH) with organo‐montmorillonite (OMMT, 11 wt %) as masterbatch have been obtained by melt blending and it has been characterized by transmission electron microscopy (TEM). Flame retardant POE/POE‐g‐MAH/OMMT/ammonium polyphosphate‐pentaerythritol (APP‐PER) (an intumescent flame retardant with 75 wt % ammonium polyphosphate and 25 wt % pentaerythritol) composites were prepared by using melting processing to study their structures, flame‐retardancy, thermal, and mechanical properties. TEM showed exfoliated structures throughout POE/POE‐g‐MAH/OMMT masterbatch and POE/POE‐g‐MAH/OMMT/APP‐PER nanocomposites. Synergistic effect was observed between OMMT and APP‐PER resulting in significant improvements on thermal stability, flame‐retardancy and mechanical properties in the POE/POE‐g‐MAH/OMMT/APP‐PER nanocomposites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Four binary polymer blends containing poly [ethylene‐co‐(acrylic acid)] (PEAA) as one component, and poly(4‐vinyl phenol‐co‐2‐hydroxy ethyl methacrylate) (P4VPh‐co‐2HEMA) or poly(2‐ethyl‐2‐oxazoline) (PEOx) or poly(vinyl acetate‐co‐vinyl alcohol) (PVAc‐co‐VA) or poly (vinylpyrrolidone‐co‐vinyl acetate) (PVP‐co‐VAc) as the other component were prepared and used as a matrix of a series of composite materials. These binary mixtures were either partially or completely miscible within the composition range studied and were characterized by differential scanning calorimetry (DSC) and Fourier transformed infrared spectroscopy (FTIR). Carbon nanotubes (CNTs) were prepared by a thermal treatment of polyester synthesized through the chemical reaction between ethylene glycol and citric acid over an alumina boat. High resolution transmission electron microscopy (HRTEM) was used to characterize the synthesized CNTs. Films of composite materials containing CNTs were obtained after evaporation of the solvent used to prepare solutions of the four types of binary polymer blends. Young's moduli of the composites were obtained by thermomechanical analysis at room temperature. Only one glass transition temperature was detected for several compositions on both binary blends and the composite material matrices. Evidence of hydrogen bond formation was recorded for both miscible blends and composite materials. The degree of crystallinity and Young's moduli of the CNT‐polymer composites increased compared to the single polymer blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

15.
Amide groups were anchored covalently on the surface of ethylene‐co‐acrylic acid (EAA) copolymer film by surface grafting of amino acid intermediates. The process consisted of four steps: conversion of carboxylic acid groups on the EAA surface to acid chloride groups, amino acid attachment, conversion of amino acid carboxyl groups to acid chloride groups, and amidation. All steps were carried out at room temperature. ATR‐FTIR spectroscopy was used to characterize the film after each step and to measure the kinetics of amino acid attachment. Three amino acids were studied: 12‐aminododecanoic acid (12‐ADDA), 5‐aminophthalic acid (5‐APA), and L ‐aspartic acid (AA). The longer‐chain 12‐ADDA compound was selected for its chemical similarity to migratory fatty amides that are commonly used to alter the frictional behavior of polyolefin films. The 5‐APA and AA compounds were selected because each has two carboxylic acid groups that can be converted to amide groups. After amidation, the modified EAA films were characterized by static water contact angle measurements and scanning probe microscopy. Results showed that the 12‐ADDA reacted to the surface much faster than the 5‐APA or AA. Several steps of aggressive rinsing confirmed that the 12‐aminododecanamide was chemically anchored onto the EAA surface. As a result, both hydrophilicity and surface roughness were increased. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1688–1694, 2004  相似文献   

16.
Polyethylene‐octene elastomer (POE)/organoclay nanocomposite was prepared by melt mixing of the POE with an organoclay (Cloisite 20A) in an internal mixer, using poly[ethylene‐co‐(methyl acrylate)‐co‐(glycidyl methacrylate)] copolymer (E‐MG‐GMA) as a compatibilizer. X‐ray diffraction and transmission electron microscopy analysis revealed that an intercalated nanocomposite was formed and the silicate layers of the clay were uniformly dispersed at a nanometre scale in the POE matrix. The nanocomposite exhibited greatly enhanced tensile and dynamic mechanical properties compared with the POE/clay composite without the compatibilizer. The POE/E‐MA‐GMA/clay nanocomposite was used to produce foams by a batch process in an autoclave, with supercritical carbon dioxide as a foaming agent. The nanocomposite produced a microcellular foam with average cell size as small as 3.4 µm and cell density as high as 2 × 1011 cells cm?3. Copyright © 2005 Society of Chemical Industry  相似文献   

17.
The phase morphology developing in immiscible poly(styrene‐co‐acrylonitrile) (SAN)/ethylene–propylene–diene monomer (EPDM) blends was studied with an in situ reactively generated SAN‐g‐EPDM compatibilizer through the introduction of a suitably chosen polymer additive (maleic anhydride) and 2,5‐dimethyl‐2,5‐di‐(t‐butyl peroxy) hexane (Luperox) and dicumyl peroxide as initiators during melt blending. Special attention was paid to the experimental conditions required for changing the droplet morphology for the dispersed phase. Two different mixing sequences (simple and two‐step) were used. The product of two‐step blending was a major phase surrounded by rubber particles; these rubber particles contained the occluded matrix phase. Depending on the mixing sequence, this particular phase morphology could be forced or could occur spontaneously. The composition was stabilized by the formation of the SAN‐g‐EPDM copolymer between the elastomer and addition polymer, which was characterized with Fourier transform infrared. As for the two initiators, the blends with Luperox showed better mechanical properties. Scanning electron microscopy studies revealed good compatibility for the SAN/EPDM blends produced by two‐step blending with this initiator. Dynamic mechanical thermal analysis studies showed that the two‐step‐prepared blend with Luperox had the best compatibility. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Polyhydroxybutyrate (PHB) is a biodegradable bacterial polyester emerging as a viable substitute for synthetic, semicrystalline, nonbiodegradable polymers. An elastomer terpolymer of acrylonitrile‐g‐(ethylene‐co‐propylene‐co‐diene)‐g‐styrene (AES) was blended with PHB in a batch mixer and in a twin‐screw extruder to improve the mechanical properties of PHB. The blends were characterized with differential scanning calorimetry, dynamic mechanical analysis, scanning electron microscopy, and impact resistance measurements. Despite the narrow processing window of PHB, blends with AES could be prepared via the melting of the mixture without significant degradation of PHB. The blends were immiscible and composed of four phases: poly(ethylene‐co‐propylene‐co‐diene), poly(styrene‐co‐acrylonitrile), amorphous PHB, and crystalline PHB. The crystallization of PHB in the blends was influenced by the AES content in different ways, depending on the processing conditions. A blend containing 30 wt % AES presented impact resistance comparable to that of high‐impact polystyrene, and the value was about 190% higher than that of pure PHB. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
To study the relationship among relaxation peaks observed in dynamic mechanical experiments and the structure of poly(ethylene‐co‐vinyl acetate) (EVA), EVA copolymers with different substitution in the carbonyl group were synthesized. EVA was hydrolyzed to obtain poly (ethylene‐co‐vinyl alcohol) and was subsequently reacted with formic, hexanoic, and octanoic acids. The copolymers synthesized were characterized by infrared spectroscopy. Analysis of the DMA spectra of the copolymers showed that their relaxation behavior depends on the vinyl acetate concentration. The α‐ and β‐transitions were observed in EVA copolymers with 8 and 18 wt % of functional groups, and the relationship among relaxation process with the structure of polymer was investigated. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1371–1376, 2005  相似文献   

20.
Extruded sheet of isotactic polypropylene and poly(ethylene‐co‐1‐octene) blends extruded from a counterrotating twin‐screw extruder were studied by scanning electron microscopy, tensile test, and small‐angle X‐ray scattering. The average characteristic length (Λm) determined by the statistical computing from the SEM images increases linearly with increasing of dispersed phase concentration. When POE content is 50 wt% (double continuous phase), Λm is two or three times as big as that of other blends ratio. The analyses of SAXS data confirm this result. Comparison has been made between experimental data of tensile test and those predicted from several meso‐mechanical models such as parallel model, series model, Halpin's model, Mori‐Tanaka's model, and modified mixture model. The modified mixture model is an effective method for predicting Young's modulus in comparison with other models. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号