首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chromium complexes with N,N,N‐tridentate ligands, LCrCl3 (L = 2,6‐bis{(4S)‐(?)‐isopropyl‐2‐oxazolin‐2‐yl}pyridine ( 1 ), 2,2′:6′,2″‐terpyridine ( 2 ), and 4,4′,4″‐tri‐tert‐butyl‐2,2′:6′,2″‐terpyridine ( 3 )), were prepared. The structures of 1 and 2 were determined by X‐ray crystallography. Upon activation with modified methylaluminoxane (MMAO), 1 catalyzed the polymerization of 1,3‐butadiene, while 2 and 3 was inactive. The obtained poly(1,3‐butadiene) obtained with 1 ‐MMAO was found to have completely trans‐1,4 structure. The 1 ‐MMAO system also showed catalytic activity for the polymerization of isoprene to give polyisoprene with trans‐1,4 (68%) and cis‐1,4 (32%) structure. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
The synthesis and detailed characterization of racemic 3‐methyl‐1,4‐dioxan‐2‐one (3‐MeDX) are reported. The bulk ring‐opening polymerization of 3‐MeDX, to yield a poly(ester‐ether) meant for biomedical applications, in the presence of various initiators such as tin(II) octanoate, tin(II) octanoate/n‐butyl alcohol, aluminium tris‐isopropoxide and an aluminium Schiff base complex (HAPENAlOiPr) under varying experimental conditions is here detailed for the first time. Polymerization kinetics were investigated and compared with those of 1,4‐dioxan‐2‐one. The studies reveal that the rate of polymerization of 3‐MeDX is less than that of 1,4‐dioxan‐2‐one. Experimental conditions to achieve relatively high molar masses have been established. Thermodynamic parameters such as enthalpy and entropy of 3‐MeDX polymerization as well as ceiling temperature have been determined. Poly(D ,L ‐3‐MeDX) is found to possess a much lower ceiling temperature than poly(1,4‐dioxan‐2‐one). Poly(D ,L ‐3‐MeDX) was characterized using NMR spectroscopy, matrix‐assisted laser desorption ionization mass spectrometry, size exclusion chromatography and differential scanning calorimetry. This polymer is an amorphous material with a glass transition temperature of about ?20 °C. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
N,N′‐(Pyromellitoyl)‐bis‐(L ‐leucine) diacid was reacted with ethyl chloroformate in the presence of triethylamine followed by reaction with activated sodium azide and gave N,N′‐(pyromellitoyl)‐bis‐(L ‐leucine) diacylazide in high yield. This diacylazide was heated in dry benzene and gave the unstable N,N′‐(pyromellitoyl)‐bis‐(L ‐leucine) diisocyanate ( 5 ) in quantitative yield. Thus, diisocyanate 5 was generated in situ and polycondensation reaction of this monomer with several aromatic diols, such as 4,4′‐dihydroxybiphenyl, 1,4‐hydroquinone, bisphenol A, phenolphthalein and 1,4‐dihydroxyanthraquinone, was performed in dry toluene under refluxing in the presence of 1,4‐diazabicyclo[2.2.2]octane (triethylenediamine) as a catalyst. The polymerization reactions proceeded within 48 h, producing a series of optically active poly(imide–urethane)s with good yield and moderate inherent viscosity in the range 0.18–0.28 dl g?1. All of the above polymers were fully characterized by infrared spectra, elemental analyses and specific rotation. Some structural characterization and physical properties of these optically active poly(imide–urethane)s are reported Copyright © 2003 Society of Chemical Industry  相似文献   

4.
N,N′‐Bis(4‐pyridinyl)piperazine and N‐(4‐pyridinyl)piperazine have been prepared by treatment of piperazine with 4‐chloropyridine. N,N′‐Bis(4‐pyridinyl)piperazine (bis‐DMAP) is similar to a couple of 4‐(N,N‐dimethylamino)pyridine (DMAP). N‐(4‐Pyridinyl)piperazine as reactive group can be linked onto the macroporous polymeric carrier producing a polymer‐bound catalyst. A linear epoxy polymer containing the supernucleophilic functional groups have been synthesized by reaction of epichlorohydrin and 4‐aminopyridine. The linear polymeric catalysts have been braced by the macroporous resin to obtain a polymer‐supported linear polymeric catalyst. It is found that catalytic activity of bis‐DMAP approaches that of DMAP. The activity of the polymer‐supported linear polymeric catalyst is higher than that of the polymer‐bound catalyst in the acetylation of tert‐butyl alcohol, as monitored by gas–liquid chromatography. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 593–597, 2000  相似文献   

5.
This work reports the preparation of 2‐hydroxyethyl methacrylate (HEMA)/N‐vinyl‐2‐pyrrolidone (NVP) interpenetrating polymer network (IPN) hydrogels by UV‐initiated polymerization in the presence of free radical photoinitiator Darocur 1173 and cationic photoinitiator 4,4′‐dimethyl diphenyl iodonium hexafluorophosphate. The polymerization mechanism was investigated by the formation of gel network. The structure and morphology of the HEMA/NVP IPN hydrogels were characterized by fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The results showed that the IPN gels exhibited homogeneous morphology. The dehydration rates of HEMA/NVP IPN hydrogels were examined by the gravimetric method. The results revealed that the hydrogels had a significant improvement of antidehydration ability in comparison with poly(2‐hydroxyethyl methacrylate)(PHEMA) hydrogel embedded physically with poly(N‐vinyl‐2‐pyrrolidone)(PVP). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
The presence of a bulky substituent at the 2‐position of 1,3‐butadiene derivatives is known to affect the polymerization behavior and microstructure of the resulting polymers. Free‐radical polymerization of 2‐triethoxysilyl‐1,3‐butadiene ( 1 ) was carried out under various conditions, and its polymerization behavior was compared with that of 2‐triethoxymethyl‐ and other silyl‐substituted butadienes. A sticky polymer of high 1,4‐structure ( ) was obtained in moderate yield by 2,2′‐azobisisobutyronitrile (AIBN)‐initiated polymerization. A smaller amount of Diels–Alder dimer was formed compared with the case of other silyl‐substituted butadienes. The rate of polymerization (Rp) was found to be Rp = k[AIBN]0.5[ 1 ]1.2, and the overall activation energy for polymerization was determined to be 117 kJ mol?1. The monomer reactivity ratios in copolymerization with styrene were r 1 = 2.65 and rst = 0.26. The glass transition temperature of the polymer of 1 was found to be ?78 °C. Free‐radical polymerization of 1 proceeded smoothly to give the corresponding 1,4‐polydiene. The 1,4‐E content of the polymer was less compared with that of poly(2‐triethoxymethyl‐1,3‐butadiene) and poly(2‐triisopropoxysilyl‐1,3‐butadiene) prepared under similar conditions. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
This study aims to use the conductivity of a synthetic polymer as the sensing probe for ethanol. In order to enhance the sensitivity of the sensor, a composite of the polymer and nickel oxide (NiO) nanoparticles was formed as it improved the conductivity. This composite exhibited 100 times more conductivity than the neat polymer. The semiconductive nanocomposite of poly [N1,N4bis(thiophen‐2‐ylmethylene)benzene‐1,4‐diamine]‐nickel oxide (PBTMBDA‐NiO) was prepared by in situ chemical oxidative polymerization. The monomer was N1,N4bis(thiophen‐2‐ylmethylene)benzene‐1,4‐diamine (BTMBDA). The monomer (BTMBDA), polymer (PBTMBDA), and NiO nanoparticles used in this study were synthesized. The monomer was prepared by refluxing together 2‐thiophene carboxaldehyde, benzene‐1,4‐diamine, and few drops of glacial acetic acid in ethanol medium for 3 h. The polymer, PBTMBDA, was formed by the chemical oxidative polymerization of BTMBDA in chloroform by FeCl3. NiO nanoparticles were prepared by slow addition of aqueous ammonia to anhydrous nickel chloride at room temperature (28 ± 2 °C), and at a pH of 8 under constant stirring condition. The composite was formed by in situ chemical oxidative polymerization of BTMBDA in chloroform by FeCl3 in the presence of the dispersed NiO nanoparticles. The molecular structure of BTMBDA and PBTMBDA were confirmed by nuclear magnetic resonance (NMR) (1H, 13C, and Dept‐90°), Fourier transform infrared spectroscopy, and ultraviolet (UV)–visible spectroscopy. The PBTMBDA and PBTMBDA‐NiO nanocomposite were characterized by X‐ray diffraction, thermogravimetric analysis, field emission scanning electron microscopy, and energy‐dispersive X‐ray spectroscopy analysis. The results of characterization studies indicate the strong interaction between PBTMBDA and NiO in the nanocomposite. The broadness of 1H NMR peaks in PBTMBDA was due to the increased number of monomer units. The disappearance of the peak of α‐hydrogens on thiophene confirms the polymerization involving the fifth position of thiophene part of BTMBDA. The Fourier transform infrared spectroscopy spectra revealed that position of the characteristic peaks of the functional groups in the monomer shifted toward lower wave numbers in PBTMBDA and PBTMBDA‐NiO nanocomposite. This shifting confirms the presence of extended conjugation along the polymer backbone. Electronic spectra of these compounds showed three absorption bands corresponding to π→π*, n→π* and n→π* transitions of π electron of carbon, lone pair electrons of S, and lone pair electrons of N (imine) groups, respectively. From the Tafel plot, the exchange current density evaluated for the BTMBDA and PBTMBDA are 0.2815 × 10−8 and 1.1508 × 10−8 A cm−2, respectively. PBTMBDA is evaluated to be a better electrode material than the BTMBDA. The X‐ray diffraction plots showed that the characteristic peak of NiO in PBTMBDA‐NiO nanocomposite suggested successful incorporation of NiO in PBTMBDA‐NiO nanocomposite. The thermogravimetric analysis revealed the improved thermal stability of the composite. Field emission scanning electron microscopy and energy‐dispersive X‐ray spectroscopy analysis confirmed the presence of the NiO in the composite. Incorporation of nickel oxide nanoparticles improved the electrical conductivity and stability of PBTMBDA. The conductivity of the polymer was found to be of the order of 10−5 S cm−1 while that of the composite was of the order of 10−3 S cm−1. The nanocomposite was found to be thermally more stable than PBTMBDA and exhibited better direct‐current electrical conductivity and isothermal stability than the PBTMBDA as revealed by the four‐probe study. The electrical conductivity as inferred from the four‐probe method was used as the parameter to study the isothermal stability of the composite. The PBTMBDA‐NiO nanocomposite based vapor sensor was constructed for the sensing of ethanol vapor in commercial ethanol and real samples (alcoholic drinks: Beer, Wine, Brandy, Vodka, Whisky, and Rum) It was observed that on exposure to ethanol vapor at ambient temperature, the electrical resistivity of the nanocomposite increased indicating suppression of charge carriers. The interaction of ethanol vapor with PBTMBDA in PBTMBDA‐NiO nanocomposite was confirmed by IR spectral technique. The change in the structure of the PBTMBDA on interaction with ethanol was highlighted by the changes in the infrared spectrum. The conductivity of the polymer was explained using the structure‐activity relationship of the monomer evaluated using Gaussian 09 software. This study also analyzed the total electron density with electrostatic potential of the monomer and its correlation with chemical reactivity in order to explain the ethanol vapor sensing‐property of the nanocomposite. A new method of ethanol vapor sensing by a conducting polymer composite is hereby reported. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45918.  相似文献   

8.
Two new FI complexes, bis[N‐(3‐allylsalicylidene)‐pentafluoroanilinato]titanium(IV) dichloride ( AFI ) and bis[N‐(3‐propylsalicylidene)‐pentafluoroanilinato]titanium(IV) dichloride ( PFI ) were designed and synthesized as catalysts for living polymerization of ethylene. The two complexes were characterized by elemental analysis, spectroscopy and X‐ray single diffraction. The catalysts were evaluated in ethylene polymerization under atmospheric pressure. It was found that both catalysts exhibited high activity and good livingness. The effects of temperature and dMAO/Ti molar ratio on the polymerization behavior of AFI were studied in detail. Elevating temperature increased self‐immobilization of the AFI catalyst, which broadened the polymer molecular weight distribution. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
A new ionic polyacetylene was prepared by the activation polymerization of 2‐ethynylpyridine with 2‐(bromomethyl)‐5‐nitrofuran in high yield without any additional initiator or catalyst. This polymerization proceeded well in a homogeneous manner to give a high yield of the polymer (92%). The activated acetylenic triple bond of N‐(5‐nitro‐2‐furanmethylene)‐2‐ethynylpyridinium bromide, formed in the first quaternerization process, was found to be susceptible to linear polymerization. This polymer was completely soluble in such polar organic solvents as dimethylformamide, dimethyl sulfoxide, and N,N‐dimethylacetamide. The inherent viscosities of the resulting polymers were in the range 0.12–0.19 dL/g, and X‐ray diffraction analysis data indicated that this polymer was mostly amorphous. The polymer structure was characterized by various instrumental methods to have a polyacetylene backbone structure with the designed substituent. The photoluminescence peak was observed at 593 nm; this corresponded to a photon energy of 2.09 eV. The polymer exhibited irreversible electrochemical behaviors between the doping and undoping peaks. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Arylamine polymers were prepared via the facile one‐step addition condensation of N,N′‐diphenyl‐N,N′‐bis(4‐methylphenyl)‐1,4‐phenylenediamine and 4‐methoxytriphenylamine with paraldehyde. The polymers were highly soluble in common organic solvents. The non‐conjugated arylamine polymer structure was characterized and found to form tough, homogeneous, amorphous layers with a glass transition temperature above 200 °C on a substrate by a simple spin‐coating process. The polymer layers exhibited a hole mobility of the order of 10?5 cm2 V?1 s?1, which was comparable with those of previously reported arylamine polymers, and a highest occupied molecular orbital level of ?5.38 eV appropriate for the hole‐transporting layer of perovskite solar cells. The perovskite cells fabricated with the polymers gave a photovoltaic conversion efficiency of 16.0%. © 2018 Society of Chemical Industry  相似文献   

11.
Tensile properties and dynamic mechanical thermal properties for polyurethane elastomers extended with N,N′‐ethyleneurea (EU) and 1,4‐butanediol (1,4‐BD) were investigated. Also gel permeation chromatography and extraction experiments for selected elastomers were performed. EU residues were introduced into polyurethane during prepolymer synthesis at 140°C. Such prepolymers with built‐in EU residues were extended with 1,4‐BD for different [NCO]/[OH] molar ratios. The use of EU chain extender produces in general polymers with inferior mechanical properties compared to the typical 1,4‐BD based polyurethanes, although some of the EU‐based polymers show improved strain‐stress parameters. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 728–733, 2000  相似文献   

12.
The polymerizations of N,N′‐bismaleimide‐4,4′‐diphenylmethane (BMI) initiated by barbituric acid (BTA) carried out in a variety of solvents at 130°C were studied. The nitrogen‐containing cyclic solvents such as N‐methyl‐2‐pyrrolidinone acted as a catalyst to promote the formation of the three‐dimensional crosslinked network structure. By contrast, the polymerization in a cyclic solvent that did not contain nitrogen such as γ‐butyrolactone resulted in nil gel content. The higher the solvent basicity, the larger the amount of insoluble polymer species formed. The molar ratio of BTA to BMI also played an important role in the polymerizations. The resultant polymers, presumably having a hyper‐branched structure, exhibited much narrower molecular weight distributions than those prepared by conventional free radical polymerizations. The BMI polymerizations using BTA as the initiator could not be adequately described by conventional free radical polymerization mechanisms. A polymerization mechanism that took into account the generation of a ketone radical pair between BTA and BMI and the subsequent initiation, propagation and termination reactions was proposed. It was concluded that the nitrogen‐containing cyclic solvents were capable of participating in the ketone radical pair formation process, thereby increasing the extent of polymer crosslinking reactions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
A novel synthesis path for the monotelechelic polydimethylsiloxane with a diol‐end group, α‐butyl‐omega‐{3‐[2‐hydroxy‐3‐(N‐methyl‐N‐hydroxyethylamino)propoxy]propyl}polydimethylsiloxane, is described in this article. The preparation included three steps, which were anionic ring‐opening polymerization, hydrosilylation, and epoxy addition. The structure and polydispersity index of the products were analyzed and confirmed by FTIR, 1H NMR, 13C NMR, H? H, and C? H. Correlated Spectroscopy and gel permeation chromatography. The results demonstrated that each step was successfully carried out and the targeted products were accessed in all cases. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Impurities containing methylene bridges between 2‐((2′‐ethylhexyl)oxy)‐5‐methoxy‐benzene molecules are inevitably formed during the synthesis of 1,4‐bis(chloromethyl)‐2‐((2′‐ethylhexyl)oxy)‐5‐methoxy‐benzene, the monomer used in the preparation of poly[2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV), but they can be removed by double recrystallization of the monomer prior to polymerization. When impurities containing methylene bridges participate in a Gilch polymerization, the methylene bonds formed in the main chains are prone to break at 200 °C, that is, at least 150 °C below the major degradation temperature of defect‐free MEH‐PPV. Interestingly, the thermal treatment used to break the methylene bonds present reduces the chain aggregation of MEH‐PPV during film formation and induces its blends with poly(2,3‐diphenyl‐5‐octyl‐p‐phenylene‐vinylene) (DPO‐PPV) to form a morphology similar to that of block copolymers. Both significantly enhance the luminescence properties. Copyright © 2006 Society of Chemical Industry  相似文献   

15.
A new conjugated light‐emitting AB copolymer containing alternating fluorene and naphthalene units, poly{(9,9‐di‐n‐octylfluorenediyl vinylene)‐alt‐[1,5‐(2,6‐dioctyloxy)naphthalene vinylene]} (PFV‐alt‐PNV), was synthesized via Horner‐Emmons polymerization. The polymer is completely soluble in common organic solvents and exhibits good thermal stability up to 400 °C. UV‐visible, fluorescence and photoluminescence measurements of the copolymer show peak maxima at 427, 500 and 526 nm, respectively. A light‐emitting device containing the new polymer was fabricated using a simple indium tin oxide configuration: (ITO)/PEDOT:PSS/PFV‐alt‐PNV/Al. Measurements of current versus electric field were carried out, with an onset of light emission occurring at 2.5 V. The electroluminescence brightness was observed to reach a maximum of 5000 cd m?2. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
Alkylation of N‐vinylpyrrolidone using lithium diisopropylamide and bis(2‐bromoethyl) ether was carried out to obtain 3‐(2‐(2‐bromoethoxy)ethyl)‐1‐vinyl‐2‐pyrrolidone ( 2 ). The derivative 2 represents a versatile starting molecule for further modification via nucleophilic displacement yielding, for example, the bicyclic 2‐vinyl‐8‐oxa‐2‐azaspiro[4.5]decan‐1‐one ( 4 ) or the ammonium salt 3‐diethoxy‐N,N′‐((dimethylbenzyl)ammonium bromide)‐1‐vinyl‐2‐pyrrolidone ( 10 ). Via free radical polymerization of 4 and 10 , the corresponding homopolymers were obtained. Copolymerization of 4 and 10 with N,N′‐diethylacrylamide yielded water‐soluble materials. The thermosensitive solubility of copolymers poly[(2‐vinyl‐8‐oxa‐2‐azaspiro[4.5]decan‐1‐one)‐co‐(N,N′‐diethylacrylamide)] and poly[(3‐diethoxy‐N,N′‐((dimethylbenzyl)ammonium bromide)‐1‐vinyl‐2‐pyrrolidone)‐co‐(N‐vinylpyrrolidone)] in water was investigated. © 2015 Society of Chemical Industry  相似文献   

17.
This study synthesizes thermally sensitive block copolymers poly(N‐isopropylacrylamide)‐b‐poly(4‐methyl‐ε‐caprolactone) (PNIPA‐b‐PMCL) and poly(N‐isopropylacrylamide)‐b‐poly(4‐phenyl‐ε‐caprolactone) (PNIPA‐b‐PBCL) by ring‐opening polymerization of 4‐methyl‐ε‐caprolactone (MCL) or 4‐phenyl‐ε‐caprolactone (BCL) initiated from hydroxy‐terminated poly(N‐isopropylacrylamide) (PNIPA) as the macroinitiator in the presence of SnOct2 as the catalyst. This research prepares a PNIPA bearing a single terminal hydroxyl group by telomerization using 2‐hydroxyethanethiol (ME) as a chain‐transfer agent. These copolymers are characterized by differential scanning calorimetry (DSC), 1H‐NMR, FTIR, and gel permeation chromatography (GPC). The thermal properties (Tg) of diblock copolymers depend on polymer compositions. Incorporating larger amount of MCL or BCL into the macromolecular backbone decreases Tg. Their solutions show transparent below a lower critical solution temperature (LCST) and opaque above the LCST. LCST values for the PNIPA‐b‐PMCL aqueous solution were observed to shift to lower temperature than that for PNIPA homopolymers. This work investigates their micellar characteristics in the aqueous phase by fluorescence spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). The block copolymers formed micelles in the aqueous phase with critical micelle concentrations (CMCs) in the range of 0.29–2.74 mg L?1, depending on polymer compositions, which dramatically affect micelle shape. Drug entrapment efficiency and drug loading content of micelles depend on block polymer compositions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
The preparation of the high cis ?1,4‐polyisoprene by Ziegler‐Natta catalysis system was studied. The effect of Al‐Ti catalysts modified by ethers with different structures which are different electron donor reagent on polymerization of isoprene has been mainly investigated. By the measurement method of the monomer conversion, FTIR, and 1H NMR spectroscopy, the influence of, respectively, added diphenyl ether, anisole, dibutyl ether, or methyl tert ‐butyl methyl ether as a third active component on the heterogeneous TiCl4‐Al(i ‐Bu)3‐ether catalyst activity and microstructure of synthetic polyisoprene was analyzed. By the adding of diphenyl ether or dibutyl ether, the process of prefabricated heterogeneous catalyst is quickly and catalyst particle quantity is large. The polymerization conversion is high and the microstructure cis ?1,4 content of the resulting polymer can reach 92%. But Al(i ‐Bu)3 added anisole or methyl tert ‐butyl methyl ether hard to cooperate with TiCl4. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 44357.  相似文献   

19.
Three N,N′‐bis(diphenylsilyl)tetraphenylcyclodisilazane‐based derivatives, N,N′‐bis(3,3,3‐trimethyl‐1,1‐diphenyl‐disiloxanyl)tetraphenylcyclodisilazane, N‐(3,3‐dimethyl‐1,1‐diphenyl‐3‐vinyl‐disiloxanyl)‐N′‐(3,3,3‐trimethyl‐1,1‐diphenyl‐disiloxanyl)‐tetraphenylcyclodisilazane, and N,N′‐bis‐(3,3‐dimethyl‐1,1‐diphenyl‐3‐vinyl‐disiloxanyl) tetraphenylcyclodisilazane, were synthesized. These compounds were synthesized in an easy and effective route. X‐ray single‐crystal diffraction analyses showed that the four‐member rings were planar rings, and the structures are different with the different substitution. The compound N,N′‐bis‐(3,3‐dimethyl‐1,1‐diphenyl‐3‐vinyl‐disiloxanyl) tetraphenylcyclodisilazane was added to the silicone rubber as additive to enhance the thermal stability greatly increased the thermal stability of the silicone rubber, without altering the glass transition temperature. The weight loss at 350°C in nitrogen atmosphere for 24 h reduced from 55.8% for 0 wt % to 9.8% for 10 wt % addition N,N′‐Bis‐(3,3‐dimethyl‐1,1‐diphenyl‐3‐vinyl‐disiloxanyl)tetraphenylcyclodisilazane. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

20.
A pH‐ and temperature‐responsive semi‐interpenetrating copolymer PEG6000/poly(NIPA‐co‐AMPS) (PEG/AMPS‐co‐NIPA SIPN), for short PEG SIPN, was made by ammonium persulfate‐initiated suspension copolymerization of N‐isopropylacrylamide, 2‐acrylamido‐2‐methylpropanesulphonic acid, and N,N′‐methylene‐bis‐acrylamide (MBAA; crosslinker) in the presence of PEG6000. The PEG SIPN copolymer matrices containing nanostructures made in the high‐temperature copolymerization resulted in channels for PEG and facile migration of drugs. In drug encapsulation or drug‐loading process, one can easily ignore or pay less attention to the interaction between a drug and its encapsulation materials; however, the ignored interactions may induce problems in drug properties or the release behavior in use. Sodium diclofenac (DFNa) precipitates as the carboxylic acid form in an acidic environment, and it is challenging to encapsulate sodium diclofenac in such an acidic matrix without precipitation of the sparingly soluble acid form of DFNa on the surface of the polymer substrate. To avoid bulky precipitation in drug loading, an in situ loading technique was developed for producing gel spheres with DFNa uniformly distributed in the polymer matrix. The technique is based on fast polymerization of spherical droplets of a pregel solution in which the drug is dissolved. Diffusion‐loading prodrugs were made in comparison with in situ loading prodrugs in thermal, release kinetics, and release behavior. Drug release profiles (in pH 7.4 phosphate buffer) show that the new drug loading technique gives controlled release during a period of about 7 days at 37°C. By contrast, gel spheres loaded with sodium diclofenac using the conventional diffusion technique produced almost total release of the drug within about 24 h. The thermal stability of sodium diclofenac, the PEG/AMPS‐co‐NIPA SIPN, and the prodrugs made with the SIPN and sodium diclofenac was studied. A near zero‐order release kinetics was found in the in vitro release of sodium diclofenac with in situ loading PEG SIPN prodrug. We have, for the first time, studied sodium diclofenac release behavior from the PEG SIPN hydrogel systems. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号