首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Petros G. Petropoulos 《Wear》1973,24(2):147-152
The homogeneity of the roughness on oblique finish turned surfaces is investigated statistically by an analysis of variance technique applied to experimental data obtained during the useful life of a carbide turning tool. In general, a highly significant row effect (due to tool wear) has been established. A significant column effect has also been found to be present in some of the selected specimens, particularly in those of smaller length. The results of this analysis provide a guide for surface roughness measurements in practice.  相似文献   

2.
3.
Tool wear has been extensively studied in the past due to its effect on the surface quality of the finished product. Vision-based systems using a CCD camera are increasingly being used for measurement of tool wear due to their numerous advantages compared to indirect methods. Most research into tool wear monitoring using vision systems focusses on off-line measurement of wear. The effect of wear on surface roughness of the workpiece is also studied by measuring the roughness off-line using mechanical stylus methods. In this work, a vision system using a CCD camera and backlight was developed to measure the surface roughness of the turned part without removing it from the machine in-between cutting processes, i.e. in-cycle. An algorithm developed in previous work was used to automatically correct tool misalignment using the images and measure the nose wear area. The surface roughness of turned parts measured using the machine vision system was verified using the mechanical stylus method. The nose wear was measured for different feed rates and its effect on the surface roughness of the turned part was studied. The results showed that surface roughness initially decreased as the machining time of the tool increased due to increasing nose wear and then increased when notch wear occurred.  相似文献   

4.
This paper presents the authors method of simultaneous analysis of roughness and waviness irregularity components, with the aim of better defining the key qualities and characteristics.  相似文献   

5.
In this study, the prediction of surface roughness heights Ra and Rt of turned surfaces was carried out using neural networks with seven inputs, namely, tool insert grade, workpiece material, tool nose radius, rake angle, depth of cut, spindle rate, and feed rate. Coated carbide, polycrystalline and single crystal diamond inserts were used to conduct 304 turning experiments on a lathe, and surface roughness heights of the turned surfaces were measured. A systematic approach to obtain an optimal network was employed to consider the effects of network architecture and activation functions on the prediction accuracy of the neural network for this application. The reliability of the optimized neural network was further explored by predicting the roughness of surfaces turned on another lathe, and the results proved that the network was equally effective in predicting the Ra and Rt values of the surfaces machined on this lathe as well.  相似文献   

6.
分析数控车削加工中的刀尖R补偿,详细说明刀尖R补偿的原理与使用方法。  相似文献   

7.
In diamond turning for the manufacture of optical surfaces, a certain degree of relative vibration is inevitably encountered between the tool and work, deteriorating the surface quality. In this paper we first describe how the tool vibration affects the surface profiles in microscopic level, and then propose a metrological scheme to identify any existence of tool vibration with a minimum effort of surface measurement and analysis.  相似文献   

8.
使用PCBN刀具对不同淬硬状态工具钢Cr12MoV进行了精密干式硬态车削试验,运用正交实验法分析了切削速度、试件硬度、刀具前角、切削深度4个因素间的交互作用,并得到了最优车削参数.试验表明:影响表面粗糙度最显著的因素是切削速度与淬火硬度,切削深度影响最小.  相似文献   

9.
10.
Study on the surface roughness of specimen is a significant field of research because this parameter affects the performance of the machined parts. Meanwhile, the evaluation of surface roughness of specimens using a vision system via the images captured from the specimen is an interesting method which is widely used. Although the effect of flank and crater wear has been investigated extensively in the past researches on surface profiles, some reports indicated that, in finish turning, the nose radius wear has a greater effect on the surface profile of specimen. Although, vibration can affect the surface profile of a specimen in rough turning, the final surface profile in the product used is usually shaped by finish turning that may not be affected by vibration using the robust machine tool. In this work, a machine vision was used to capture the images of the tool tip in-cycle. The 2-D images of the nose area of tool tips were used to simulate the surface profile of specimens in finish turning. The simulated images of specimens in a range of machining condition were detected using the algorithm of this work. The results showed that this method can be used successfully to simulate and evaluate the surface profile of a specimen in finish lathe machining as a fingerprint of the tool tip. This method can be used for forecasting the final surface profile in order to control the performance of products.  相似文献   

11.
The objective of this paper is to develop a Taguchi optimization method for low surface roughness in terms of process parameters when milling the mold surfaces of 7075-T6 aluminum material. Considering the process parameters of feed, cutting speed, axial-radial depth of cut, and machining tolerance, a series of milling experiments were performed to measure the roughness data. A regression analysis was applied to determine the fitness of data used in the Taguchi optimization method using milling experiments based on a full factorial design. Taguchi orthogonal arrays, signal-to-noise (S/N) ratio, and analysis of variance (ANOVA) are used to find the optimal levels and the effect of the process parameters on surface roughness. A confirmation experiment with the optimal levels of process parameters was carried out in order to demonstrate the effectiveness of the Taguchi method. It can be concluded that Taguchi method is very suitable in solving the surface quality problem of mold surfaces.  相似文献   

12.
Chip formation behavior of micromachining is governed by the tool edge radius effect as reflected by the characteristic changes in plastic deformation at varying combinations of tool edge radius, r, and undeformed chip thickness, a. At high a/r above unity, concentrated plastic deformation takes place at the primary and secondary deformation zones akin to conventional macromachining. Decreasing a/r below unity promotes localized deformation ahead of the tool edge radius, with the expansion in fraction of the primary deformation zone and the simultaneous shrinkage in fraction of the secondary deformation zone following the reductions in total tool–chip contact length. Further decrease of a/r below a critical threshold brings forth a total suppression of secondary deformation zone and resulted in an ultimate localization of plastic deformation ahead of the tool edge radius. This is perceived as a transition in chip formation mechanism from concentrated shearing to a thrust-oriented behavior.  相似文献   

13.
In this study, the effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and resultant forces in the finish hard turning of AISI H13 steel were experimentally investigated. Cubic boron nitrite inserts with two distinct edge preparations and through-hardened AISI H13 steel bars were used. Four-factor (hardness, edge geometry, feed rate and cutting speed) two-level fractional experiments were conducted and statistical analysis of variance was performed. During hard turning experiments, three components of tool forces and roughness of the machined surface were measured. This study shows that the effects of workpiece hardness, cutting edge geometry, feed rate and cutting speed on surface roughness are statistically significant. The effects of two-factor interactions of the edge geometry and the workpiece hardness, the edge geometry and the feed rate, and the cutting speed and feed rate also appeared to be important. Especially honed edge geometry and lower workpiece surface hardness resulted in better surface roughness. Cutting-edge geometry, workpiece hardness and cutting speed are found to be affecting force components. The lower workpiece surface hardness and honed edge geometry resulted in lower tangential and radial forces.  相似文献   

14.
The influence of the roughness parameter (C) and the roughness patterns (longitudinal, transverse and isotropic) on the steady state and dynamic characteristics of hydrodynamic journal bearings with rough surfaces has been studied using the model of Christensen and Tonder (The hydrodynamic lubrication of rough journal bearings. Trans. ASME, Journal of Lubrication: Technology 1973;95:166–72). Reynolds-type equations have been solved using the stochastic finite method. It is seen that the transverse roughness tends to increase significantly load carrying capacity and stability with roughness values, whereas in the case of other roughness patterns the effect is seen to be very small.  相似文献   

15.
R.T. Spurr 《Wear》1976,40(3):383-387
Equations that give the c.l.a. roughness of metals after they have been slid against various grades of abrasive paper are derived and confirmed experimentally.  相似文献   

16.
Although literature on the measurement of flank wear and crater wear in single-point turning tools using machine vision is well documented, the study on the effect of nose radius wear on the roughness profile and dimensional changes of workpiece is less explored. The measurement of flank wear using the 2-D profile of the tool nose region or the roughness profile of the workpiece has also not been attempted in the past. In this work, the nose radius wear of cutting tools and roughness profile of turned parts in a lathe operation were measured using the machine vision method. The flank wear width VBC in the nose area was determined from the nose radius wear using the tool setup and machining geometry. The nose radius wear was also determined from the roughness profile of the workpiece and used in calculating the flank wear width. Comparison between the maximum flank wear width VBCmax determined from the roughness profile and that obtained using a toolmaker’s microscope showed a mean deviation of 5.5%. This result indicates that flank wear can be determined fairly accurately from the workpiece roughness profile if the tool and machining geometry are known.  相似文献   

17.
18.
An examination of several brazed cemented carbide tool inserts that were used in service for cutting cured (dry) pine is described. A laboratory test is also described where the relative resistance to chipping of the brazed tool inserts was measured.It is shown that tool wear occurs through a continuous increase in the tool cutting edge radius that produces a deterioration in the appearance of the machined surface. It is also shown that an increase in either the binder volume fraction or the tool wedge angle produces an increase in the energy absorbed on impact. It is suggested that if progressive wear determines the useful life of a cemented carbide cutting tool then a low volume fraction of binder is required whereas if tool edge chipping determines the useful life of a cutting tool then a large volume fraction of binder and a large tool wedge angle are required.  相似文献   

19.
提出了设计高端机床进给驱动的若干原则.分析了滑动和滚动导轨的结构形式及其优缺点.讨论了不同直线进给和圆周进给的结构形式及其发展趋势.最后对保证进给运动精度的测量传感系统作了全面的介绍.  相似文献   

20.
Formulas are proposed for determining the roughness of shot-hardened surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号