共查询到20条相似文献,搜索用时 15 毫秒
1.
Vinyl pivalate (VPi) was solution polymerized in tertiary butyl alcohol (TBA) and in dimethyl sulfoxide (DMSO) with a low chain transfer constant using a low temperature initiator, 2,2′‐azobis(2,4‐ dimethylvaleronitrile) (ADMVN). The effects of polymerization temperature and initiator concentration were investigated in terms of polymerization behavior and molecular structures of poly(vinyl pivalate) (PVPi) and its saponification product poly(vinyl alcohol) (PVA). TBA was absolutely superior to DMSO in increasing the syndiotacticity and molecular weight of PVA. In contrast, TBA was inferior to DMSO in causing conversion to polymer, indicating that the initiation rate of VPi production in TBA was lower than that in DMSO. These effects could be explained by a kinetic order of ADMVN concentration, calculated by the initial rate method. Low‐temperature solution polymerization of VPi in TBA or DMSO by adopting ADMVN proved to be successful in obtaining PVA of ultrahigh molecular weight [maximum number‐average degree of polymerization (Pn): 13,500–17,000] and of high yield (ultimate conversion of VPi into PVPi: 55–83%). In the case of bulk polymerization of VPi at the same conditions, maximum Pn and conversion were 14,500–17,500 and 22–36%, respectively. The Pn and syndiotactic diad content were much higher and the degree of branching was lower with PVA prepared from PVPi polymerized at lower temperatures in TBA. Moreover, PVA from the TBA system was fibrous, with a high degree of orientation of the crystallites, indicating the syndiotactic nature of TBA polymerization. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1992–2003, 2002 相似文献
2.
3.
Won Seok Lyoo Sung Jun Lee Joon Ho Kim Seok Kyun Noh Byung Chul Ji Byoung Chul Kim 《应用聚合物科学杂志》2004,93(1):41-46
This article describes the molecular weight effect of atactic poly(vinyl alcohol) (a‐PVA) on the rheological properties of 7.5, 10.0, and 12.5 g/dL solutions of a‐PVA with number‐average degrees of polymerization (Pn) of 4000 and 1700 in dimethylsulfoxide/water mixture. a‐PVA with a Pn of 1700 solutions exhibited almost Newtonian flow behavior, whereas high molecular weight a‐PVA, with a Pn of 4000 solutions, exhibited shear‐thinning behavior. On the plot of storage and loss moduli of a‐PVA with a Pn of 1700 solutions, the dynamic storage modulus of a‐PVA, with a Pn of 1700 solutions, was smaller than the dynamic loss modulus over the frequency range of 10?1 to 102 rad/s. However, the dynamic storage modulus of a‐PVA, with a Pn of 4000 solutions, was smaller than the dynamic loss modulus in the sol state and, in the postgel state, the dynamic storage modulus became larger than the dynamic loss modulus, indicating the evolution of viscoelastic solid properties. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 41–46, 2004 相似文献
4.
5.
以环氧氯丙烷为交联剂,采用室温化学交联法制备了聚乙烯醇(PVA)水凝胶,研究了交联温度和交联时间对PVA溶胀性能和力学性能的影响,借助差示扫描量热法(DSC)和扫描电子显微镜(SEM)对PVA水凝胶进行分析表征。结果表明,当交联时间为3d且交联温度为50℃时PVA水凝胶的综合性能最佳。PVA的玻璃化转变温度为-54.50℃,PVA水凝胶中包含有自由水、束缚水和非冷冻水。 相似文献
6.
Mi‐Seon Shin Seon Jeong Kim In Young Kim Nam Gyun Kim Chul Gyu Song Sun I. Kim 《应用聚合物科学杂志》2002,85(5):957-964
Poly(vinyl alcohol) (PVA) was dissolved in the water to make a 10 wt % aqueous solution, and polydimethylsiloxane (PDMS) was mixed with 1 wt % 2,2‐dimethyl‐2‐phenylacetophenone (DMPAP) and 0.5 mol % methylenebisacrylamide (MBAAm) in isopropyl alcohol. This mixture was added to a PVA aqueous solution and heated at 90°C for 7 h. Various crosslinked networks were prepared at different molar ratios of PVA/PDMS (1:1, 1:3, and 3:1). The characterization of PVA/PDMS crosslinked networks was determined by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), a universal testing machine (UTM), and the equilibrium water content (EWC). The DSC melting endotherms showed, at 219.49°C, a sharp endothermic peak of PVA, and PVA/PDMS crosslinked networks had melting peaks close to this point. The value of EWC increased with the content of PVA in the crosslinked networks, simultaneously depending on the temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 957–964, 2002 相似文献
7.
Nanocomposite (NC) membranes based on hydrophobically modified PVA and laponite were synthesized with varying laponite content in the feed. The incorporation of laponite in NC membranes was investigated by FTIR spectroscopy and thermogravimetric analysis. The swelling ratio of membranes was determined as a function of temperature and laponite content. Swelling studies of NC membranes exhibited the decrease in swelling with an increase in laponite content in the NC membranes. The swelling ratio of NC membrane with 20% laponite slightly increased with an increase in temperature. Dynamic mechanical analysis showed the systematic increase in storage modulus with laponite content, which indicates the enhancement of mechanical property upon laponite addition. There was also a decrease in the tan δ peak values of NC membranes with an increase in laponite content in NCs. The permeabilities through NC membranes as a function of solute size and laponite content were studied and the results showed molecular screening based on size. The permeability of solute reduced due to the presence of well‐dispersed laponite in the NC. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2896–2903, 2007 相似文献
8.
A novel series of copolymeric acrylamide/potassium acrylate superabsorbents, blended with poly(vinyl alcohol), have been synthesized by using N, N′‐methylenebisacrylamide as a crosslinker and potassium persulphate (K2S2O8) as an initiator. Swelling behavior of these hydrogels in water was investigated; and on the basis of swelling properties, the diffusional behavior of water into these hydrogel systems was analyzed. It was observed that with the increase of amount of poly(vinyl alcohol) or crosslinking, the swelling of the hydrogels decreased. The hydrogel synthesized by addition of 5% poly(vinyl alcohol) and 0.25% crosslinking showed maximum swelling of 54445%. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1927–1931, 2005 相似文献
9.
Preparation and electroresponsive property of poly(vinyl alcohol)/sodium alginate composite hydrogel
Poly(vinyl alcohol) (PVA)/sodium alginate composite hydrogel was prepared by solidifing the blending solution of PVA and sodium alginate, then freezing and thawing repeatedly. In the direct current electric field, the composite hydrogel in aqueous NaCl solution swelled, contracted, and bent. The gel's bending speed and maximum bending degree increased with increase in the electric field intensity and the concentration of NaCl solution. The maximum bending degree increased with increase in the sodium alginate content in the composition hydrogel. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3493–3496, 2006 相似文献
10.
Poly(vinyl alcohol) (PVA) was modified with phthalic anhydride to obtain half esters with carboxylic acid groups, which made the reaction with epichlorohydrin easier. The oxirane ring underwent a further crosslinking that led to crosslinked polymers with polar groups capable of interacting strongly with water and therefore with properties of hydrogels. The curing kinetics of the crosslinking were studied by differential scanning calorimetry, and the dependence of the activation energy on conversion degree was studied by isoconversional kinetic analysis. Water absorption was determined gravimetrically as a function of time at room temperature. The swelling behavior of these hydrogels was related to the degree of crosslinking. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 693–698, 2003 相似文献
11.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) (PVA) and 1‐vinyl‐2‐pyrrolidone (VP) were prepared by radical polymerization using 2,2‐dimethyl‐2‐phenylacetophenone (DMPAP) and methylene bisacrylicamide (MBAAm) as initiator and crosslinker, respectively. The thermal characterization of the IPNs was investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). Depressions of the melting temperatures of PVA segments in IPNs were observed with increasing VP content via the DSC. The DEA was employed to ascertain the glass transition temperature (Tg) of IPNs. From the result of DEA, IPNs exhibited two Tgs indicating the presence of phase separation in the IPN. The thermal decomposition of IPNs was investigated using TGA and appeared at near 270°C. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1844–1847, 2002 相似文献
12.
The influence of poly(vinyl alcohol) suspending agents on suspension poly(vinyl chloride) morphology
Stephen Ormondroyd 《Polymer International》1988,20(4):353-359
The requirements for PVC suspension resin have changed considerably in the last few years, so much so that few companies have products on their ranges that are more than 4 or 5 years old. The suspending agent has a crucial influence on the morphology of the resin, so the changes in resin characteristics have largely been achieved by changes in the suspending agent systems. After a brief review of the mechanism of PVC suspension polymerisation, the properties of polymers made using PVOH suspending agents are related to changes in the latter. The effect of variations in PVAc degree of hydrolysis and viscosity are related to changes in surface tension. Methods of achieving higher porosity by using low hydrolysis co-suspending agents are described. It is shown that higher bulk densities can be achieved by delayed addition of the PVOH. Levels of conjugated unsaturation and copolymer distributions are also shown to have important influences. 相似文献
13.
Hyun Ju Lim Sung Jun Lee Han Jo Bae Seok Kyun Noh Yong Rok Lee Sung Soo Han Han Yong Jeon Won Ho Park Won Seok Lyoo 《应用聚合物科学杂志》2007,106(5):3282-3289
The effects of tacticities on the characteristics of poly(vinyl alcohol) (PVA) nanowebs prepared by an electrospinning technique were investigated. PVA webs composed of uniform nanofibers with syndiotactic dyad (s‐dyad) contents of 53.5 and 57.3% were successfully obtained with electrospinning. By changing processing parameters such as the initial polymer concentration, applied voltage, and tip‐to‐collector distance, we found suitable conditions for forming PVA webs with uniform nanofibers. PVAs of higher s‐dyad contents were prepared at a lower solution concentration and at a higher applied voltage because of the easy formation of syndiotactic PVA chain entanglements at a very low polymer concentration. The average diameter of the nanofibers in a PVA web with the higher s‐dyad content of 57.3% (ca. 240 nm) was thinner than that of the nanofibers in a PVA web with the lowers‐dyad content of 53.5% (ca. 270 nm). In addition, the crystallinity and thermal stability were greatly increased with an increase in the s‐dyad content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
14.
A series of polymer-clay nanocomposite (PCN) materials that consist of poly(vinyl alcohol) (PVA) and layered montmorillonite (MMT) clay are prepared by effectively dispersing the inorganic nanolayers of MMT clay in organic PVA matrix via an in situ free radical polymerization with AIBN as initiator. Organic vinyl acetate monomers are first intercalated into the interlayer regions of organophilic clay hosts and followed by a one-step free radical polymerization. The prepared poly(vinyl acetate)-clay (PVAc-clay) solution are then saponified via direct-hydrolysis with NaOH solution to form PVA-clay nanocomposite materials. The as-synthesized PCN materials are typically characterized by Fourier-Transformation infrared (FTIR) spectroscopy, wide-angle X-ray diffraction and transmission electron microscopy.The molecular weights of poly(vinyl alcohol) (PVA) extracted from polymer-clay nanocomposite (PCN) materials and bulk PVA are determined by gel permeation chromatography (GPC) analysis with THF as eluant. The viscosity property of PCN materials with different feeding amount of MMT clay is studied by an ubbelohode capillary viscometer. The morphological image of as-synthesized materials is studied by scanning electron microscopy (SEM) and optical polarizing microscope (OPM). Effects of the material composition on the thermal stability, mechanical strength, optical clarity of PVA along with a series of PCN materials, in the form of fine powder and free-standing film, are also studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analyzer (DMA) and UV-visible transmission spectra, respectively. 相似文献
15.
Thermal and mechanical behaviors of poly(vinyl alcohol) (PVA)–lactose blends were studied by differential scanning calorimetry, thermal gravimetric analysis, and stress–strain analysis. The increase in glass transition temperature of the PVA–lactose blends with lactose contents suggests the formation of hydrogen‐bonded PVA–lactose complex in the PVA matrix. The hydrogen bonding interactions can improve thermal and mechanical properties of the blends. Results of this study demonstrate that lactose, a byproduct of dairy industry, can be used directly and in substantial quantity (33%) as a modifier to enforce the physical properties of PVA. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 929–935, 2002 相似文献
16.
17.
Keratin–poly(vinyl alcohol) (PVA) blend fibers containing 13–46 wt % of –SSONa+ (S‐sulfo) keratin were prepared by the wet‐spinning technique. They were formed by dehydration of an aqueous solution of S‐sulfo keratin and PVA (spinning dope) in a coagulation bath of sodium sulfate–saturated solution and subsequently drawn. Keratin–PVA fibers showed higher tenacity than that of wool, presumably originating from the high mechanical strength of the PVA component. The heat treatment at about 200°C improved the waterproof characteristics such as shrinkage of keratin–PVA fibers more conspicuously than did PVA fibers. That is, after heat treatment at 195°C for 10 min, keratin–PVA blend fiber shrank 20% in water at 60°C, whereas PVA fiber shrank 56%. Differential thermal analysis suggested the crosslinking of disulfide bonds between keratin molecules during the heat treatment, whereas the additional crystallization of PVA component was not observed. Adsorption of heavy metal and toxic gas to keratin–PVA fibers was also investigated. Keratin–PVA fiber was found to adsorb Ag+ and formaldehyde gas more efficiently than PVA. Thus, blends of keratin and PVA were advantageous for both polymer fibers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 756–762, 2004 相似文献
18.
Thermomechanical behavior of membranes based on blends of poly(vinyl alcohol) (PVA) with different weight percentage (wt %) of glycerol has been studied. Solid‐state PVA/Glycerol polymer membranes were prepared by a solution casting method. The films were studied for thermal characteristics by differential scanning calorimetry (DSC) and thermogravimetric analysis and for the mechanical properties including hardness and modulus by nanoindentation method. The dispersion of glycerol within the polymer matrix was examined using scanning electron microscopy. Fourier transform infrared spectroscopy was used to confirm the formation of hydrogen bonding between the plasticizer and PVA in their blends and also to provide information on compatibility and physical interactions between the glycerol and PVA. It was found that the thermal properties particularly the melting point (Tm) for PVA blends exhibit a reduced value proportional to the glycerol content. The hardness and elastic modulus were also found to decrease with an increase in plasticizer content. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
19.
Poly(vinyl alcohol) is crosslinked in dilute solution (c=0.1 wt%) with glutaraldehyde. The reaction product is characterized by viscometry and gel permeation chromatography (g.p.c.). The intrinsic viscosity decreases with increasing degree of crosslinking and does not depend on temperature. G.p.c. reveals that the reaction product is not homogeneous, but consists of a mixture of particles with different sizes, possibly both intra- and intermolecularly crosslinked molecules. The intramolecularly crosslinked molecules are smaller in size than the initial polymer molecules and their size depends on the degree of crosslinking. They possess a narrow particle size distribution even if the initial polymer sample had a broad molecular weight distribution. 相似文献
20.
Kapender Phogat Susheem Kanwar Debabrata Nayak Navya Mathur Subrata Bandhu Ghosh Sanchita Bandyopadhyay-Ghosh 《应用聚合物科学杂志》2020,137(23):48789
We report development of poly(vinyl alcohol) (PVA)-based novel injectable hydrogel nanocomposite scaffolds. Nanocellulose (NC), synthesized from agricultural biomass, was used as reinforcement within PVA matrix. The hydrogels were formed using physical crosslinking process involving multiple freeze–thaw cycles. A range of bio-nanocomposite hydrogels were prepared with varying concentrations of NC. With increasing loading of NC, crystallinity was found to be increased, which could be attributed to nucleating effect and crystalline nature of nanofibrillar cellulose. Investigation of microstructural surface topology indicated reduced surface perturbations upon incorporation of NC. Fourier transform infrared spectroscopy studies further indicated presence of characteristic functional groups and possible interactions between PVA and NC. Enhanced structural integrity and dynamic stability of the bio-nanocomposite hydrogels were also confirmed by carrying out rheological investigations at different frequency, amplitude, temperature, and time sweeps. Further, the bio-nanocomposite hydrogels demonstrated excellent injectability and self-standing behavior, establishing the promising potential as injectable scaffolds. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48789. 相似文献