首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Ball milled jute fiber (JF) was added to Polyvinyl Alcohol (PVA)/20 wt.% multi-layer graphene (MLG) composites in various proportions (0, 5, 10, 15 and 20 wt.%) to prepare sustainable and biodegradable conducting polymer composites. Also, PVA/17.5wt.%MLG/2.5wt.%MWCNT/20wt.% JF composite was prepared for comparison purpose. A dynamic mechanical analysis of the composites was conducted to analyze their viscoelastic nature. The electrical conductivity of the composites was measured to study their suitability for various applications. Jute reinforcement increased the electrical conductivity of PVA/MLG nanocomposites. The PVA/20wt.%JF/17.5wt.%MLG/2.5wt.%MWCNT hybrid composite had the highest electrical conductivity of 3.64 × 10?4 S/cm among all the composites prepared. Multilayered structures of the hybrid composite films were made by hot-pressing, and their effectiveness in electromagnetic interference shielding was tested. The shielding effectiveness of the composites decreased with jute addition. The wear resistance of PVA/MLG/JF composites increased with an increase in the jute content up to an optimum value of 10 wt.%, and then it started deteriorating.  相似文献   

2.
Polymer composites, which are light in weight, cost effective, and less toxic, have potential applications in X-ray and γ-ray shielding and protection. In this work, we have explored the efficacy of poly(vinyl alcohol)–bismuth oxide composites as radiation shielding materials. Poly(vinyl alcohol) composites with different wt % (0–50) of bismuth were prepared by a simple solution casting technique. Structural and thermal characterization of these samples was carried out using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). TGA revealed the enhanced thermal stability of these composites. AC conductivity measurements and optical spectroscopy were used to analyze their electrical behavior. The composites showed low conductivity, and the energy gap obtained also showed their tendency to be insulators. The radiation attenuation properties were investigated using X-ray (5.895 and 6.490 keV) and γ-ray (59.54 and 662 keV) transmission measurements. The shielding efficiency of the composites increased with filler wt %. The 40 wt % composites exhibited mass attenuation coefficients of 122.68 and 93.02 cm2/g at photon energies of 5.895 and 6.490 keV, respectively, while the 50 wt % composites showed 1.57 and 0.092 cm2/g at photon energies of 59.54 and 662 keV, respectively. The effective atomic number quantifies the probability of interaction of radiation with matter. The effective atomic number of the composites calculated by the direct method was in good agreement with the theoretical value obtained from Auto-Zeff software. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47949.  相似文献   

3.
Novel polymer nanocomposites comprising of MnO2 nanotubes (MNTs), functionalized multiwalled carbon nanotubes (f-MWCNTs), and polyvinylidene fluoride (PVDF) were synthesized. Homogeneous distribution of f-MWCNTs and MNTs in PVDF matrix were confirmed by field emission scanning electron microscopy. Electrical conductivity measurements were performed on these polymer composites using four probe technique. The addition of 2 wt.% of MNTs (2 wt.%, f-MWCNTs) to PVDF matrix results in an increase in the electrical conductivity from 10-16S/m to 4.5 × 10-5S/m (3.2 × 10-1S/m). Electromagnetic interference shielding effectiveness (EMI SE) was measured with vector network analyzer using waveguide sample holder in X-band frequency range. EMI SE of approximately 20 dB has been obtained with the addition of 5 wt.% MNTs-1 wt.% f-MWCNTs to PVDF in comparison with EMI SE of approximately 18 dB for 7 wt.% of f-MWCNTs indicating the potential use of the present MNT/f-MWCNT/PVDF composite as low-cost EMI shielding materials in X-band region.  相似文献   

4.
Highly filled graphite polybenzoxazine composites as bipolar plate material for polymer electrolyte membrane fuel cell (PEMFC) are developed. At the maximum graphite content of 80 wt % (68 vol %), storage modulus was increased from 5.9 GPa of the neat polybenzoxazine matrix to 23 GPa in the composite. Glass transition temperatures (Tg) of the composites were ranging from 176°C to 195°C and the values substantially increased with increasing the graphite contents. Thermal conductivity as high as 10.2 W/mK and electrical conductivity of 245 S cm?1 were obtained in the graphite filled polybenzoxazine at its maximum graphite loading. The obtained properties of the graphite filled polybenzoxazine composites exhibit most values exceed the United States department of energy requirements for PEMFC applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3909–3918, 2013  相似文献   

5.
Thermally conductive and electromagnetic interference shielding composites comprising low content of Ag‐plating carbon fiber (APCF) were fabricated as electronic packing materials. APCF as conductive filler consisting of carbon fiber (CF) employed as the structural component to reinforce the mechanical strength, and Ag enhancing electrical conductivity, was prepared by advanced electroless Ag‐plating processing on CF surfaces. Ag coating had a thickness of 450 nm without oxide phase detected. The incorporation of 4.5 wt % APCF into epoxy (EP) substrate yielded thermal conductivity of 2.33 W/m·K, which is approximately 2.6 times higher than CF–EP composite at the same loading. The APCF–EP composite performed electromagnetic shielding effectiveness of 38–35 dB at frequency ranging from 8.2 to 12.4 GHz in the X band, and electromagnetic reflection was the dominant shielding mechanism. At loading content of APCF up to 7 wt %, thermal conductivity of APCF–EP composites increased to 2.49 W/m·K. Volume resistivity and surface resistivity decreased to 9.5 × 103 Ω·cm and 6.2 × 102 Ω, respectively, which approached a metal. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42306.  相似文献   

6.
This study presents the preparation of electrically conducting poly(ε‐caprolactone) (PCL)/multiwall carbon nanotube (MWCNT) composites with very low percolation threshold (pc). The method involves solution blending of PCL and MWCNT in the presence of commercial PCL beads. The PCL beads were added into high viscous PCL/MWCNT mixture during evaporation of solvent. Here, the used commercial PCL polymer beads act as an ‘excluded volume’ in the solution blended PCL/MWCNT region. Thus, the effective concentration of the MWCNT dramatically increases in the solution blended region and a strong interconnected continuous conductive network path of CNT−CNT is assumed throughout the matrix phase with the addition of PCL bead which plays a crucial role to improve the electromagnetic interference shielding effectiveness (EMI SE) and electrical conductivity at very low MWCNT loading. Thus, high EMI SE value (∼23.8 dB) was achieved at low MWCNT loading (1.8 wt %) in the presence of 70 wt % PCL bead and the high electrical conductivity of ∼2.49×10−2 S cm−1 was achieved at very low MWCNT loading (∼0.15 wt %) with 70 wt % PCL bead content in the composites. The electrical conductivity gradually increased with increasing the PCL bead concentration, as well as, MWCNT loading in the composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42161.  相似文献   

7.
Polyaniline or polypyrrole composites with fir or oak wood have been prepared by in situ polymerization of the corresponding monomers in an aqueous suspension of wood sawdust. The percolation threshold of compressed coated particles is located below 5 wt % of the conducting component and, above this limit, the conductivity of most composites was higher than 10?3 S cm?1. The conductivity of composites containing ca 30 wt % of conducting polymer was of the order of 10?1 S cm?1, an order of magnitude lower than that of the corresponding homopolymers, polyaniline and polypyrrole. The conductivity stability has been tested at 175°C. The polypyrrole‐based composites generally lasted for a longer time than pyrrole homopolymers, also on account of the improved mechanical integrity of the samples provided by the presence of wood. The reverse order was found with polyaniline composites. The dielectric properties of the composites were determined in the range of 100 MHz–3 GHz, indicating that thick layers of composite material, ~ 100 mm, are needed for the screening of the electromagnetic radiation below ?10 dB level in this frequency range. Nevertheless, considering the potential production cost of composites and their low weight, such composite materials could be of practical interest in the shielding of electromagnetic interference. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 807–814, 2005  相似文献   

8.
Polyvinyl chloride (PVC)/graphene and poly(methyl methacrylate) (PMMA)/graphene nanocomposites were made by solution casting technique with graphene weight fractions of 1, 5, 10, 15, and 20%. Multilayer structures of the composites were made by hot compression technique to study their electromagnetic interference shielding effectiveness (EMI SE). Tensile strength, hardness, and storage modulus of the nanocomposites were studied in relation with graphene weight fraction. There has been a substantial increase in the electrical conductivity and EMI SE of the composites with 15–20% filler loading. Differential thermal analysis of the composites shows improved thermal stability with an increase in graphene loading. PMMA/graphene composites have better thermal stability, whereas PVC/graphene composites have superior mechanical properties. About 2 mm thick multilayer structures of PMMA/graphene and PVC/graphene composites show a maximum EMI SE of 21 dB and 31 dB, respectively, in the X band at 20 wt % graphene loading. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47792.  相似文献   

9.
A series of ethylene–octene copolymer (EOC) composites have been prepared by melt‐mixing with different weight ratios of expandable graphite filler (0–50% by weight). Electrical conductivity [both alternating current (AC) and direct current (DC)] and thermal conductivity studies were carried out. Effect of filler loading and frequency on electrical conductivity was studied. DC conductivity has increased from 1.51 × 10?13 S cm?1 to 1.17 × 10?1 S cm?1. Percolation threshold by DC and also AC methods was observed at about 16 vol% of the filler. Real part of permittivity was found to be decreasing with increase in frequency while conductivity was increasing. Thermal conductivity was also found to be increasing gradually from 0.196 to 0.676 Wm?1 K?1 which is about 245% increase. Graphite not only increases the electrical and thermal conductivities but at and above 40 wt%, also acts as a halogen‐free, environmental friendly flame retardant. Shore‐A hardness of EOC/graphite composites shows that even with high graphite loading, the hardness is increased from about 50–68 only so that the rubbery nature of the composite is not affected very much. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

10.
A silane coupling agent was used to modify the surface of expanded graphite (EG), which was subsequently used as a thermally conductive filler to fabricate diglycidylether of bisphenol-A (DGEBA)/EG composites with high thermal conductivity via hot blending and compression-curing processes. The surface characteristics of silane coupling agent-modified EG (Si@EG) were characterized by a variety of analytical techniques. The effects of the Si@EG content on the thermal conductivity, thermal stability, impact strength, and morphology of the DGEBA/Si@EG composites were investigated. The results revealed that the addition of 80 wt.% Si@EG increased the thermal conductivity of the composites from 0.17 to 10.56 W/m K, which was 61.1 times higher than that of pristine DGEBA. The initial decomposition temperature of the composite containing 80 wt.% Si@EG was 60.6°C higher than that of pristine DGEBA. The impact strength of the composites decreased from 2.0 to 0.87 kJ/m2 when the Si@EG content increased from 0 to 80 wt.%. The scanning electron microscopy images of the fractured surfaces revealed that the EG sheets in the DGEBA matrix formed a continuous thermally conductive path at high Si@EG contents.  相似文献   

11.
This work evaluates the influence of two types of carbonaceous fillers, carbon black (CB) and carbon nanotubes (CNTs), on the electrical, electromagnetic, and rheological properties of composites based on poly(acrylonitrile‐co‐butadiene‐co‐styrene) (ABS) prepared by the melt mixing. Electrical conductivity, electromagnetic shielding efficiency (EMI SE) in the X‐band frequency range (8–12.4 GHz), and melt flow index (MFI) results showed that ABS/CNT composites exhibit higher electrical conductivity and EMI SE, but lower MFI when compared to ABS/CB composites. The electrical conductivity of the binary composites showed an increase of around 16 orders of magnitude, when compared to neat ABS, for both fillers. Binary composites with 5 and 15 wt % of filler showed an EMI SE of, respectively, ?44 and ?83 dB for ABS/CNT, and ?9 and ?34 dB for ABS/CB. MFI for binary composites with 5 wt % were 15.45 and 0.55 g/10 min for CB and CNT, respectively. Hybrid composites ABS/CNT.CB with 3 wt % total filler and fraction 50:50 and 75:25 showed good correlation between EMI SE and MFI. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46546.  相似文献   

12.
Novel foam composites comprising functionalized graphene (f‐G) and polyvinylidene fluoride (PVDF) were prepared and electrical conductivity and electromagnetic interference (EMI) shielding efficiency of the composites with different mass fractions of f‐G have been investigated. The electrical conductivity increases with the increase in concentration of f‐G in insulating PVDF matrix. A dramatic change in the conductivity is observed from 10?16 S · m?1 for insulating PVDF to 10?4 S · m?1 for 0.5 wt.% f‐G reinforced PVDF composite, which can be attributed to high‐aspect‐ratio and highly conducting nature of f‐G nanofiller, which forms a conductive network in the polymer. An EMI shielding effectiveness of ≈20 dB is obtained in X‐band (8–12 GHz) region and 18 dB in broadband (1–8 GHz) region for 5 wt.% of f‐G in foam composite. The application of conductive graphene foam composites as lightweight EMI shielding materials for X‐band and broadband shielding has been demonstrated and the mechanism of EMI shielding in f‐G/PVDF foam composites has been discussed.

  相似文献   


13.
This article describes the synthesis and characterization of highly conductive polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites prepared by in situ polymerization of pyrrole using 5‐sulfoisophthalic acid monolithium salt [lithio sulfoisophthalic acid (LiSiPA)] as dopant and ferric chloride as oxidant. Several samples were prepared by varying the amounts of MWCNTs ranging from 1 to 5 wt %. Scanning electron microscope and transmission electron microscope images clearly show a thick coating of PPy on surface of MWCNTs. The electrical conductivity of PPy increased with increasing amount of MWCNTs and maximum conductivity observed was 52 S/cm at a loading of 5 wt % of MWCNTs. Pure PPy prepared under similar conditions had a conductivity of 25 S/cm. Electromagnetic interference (EMI) shielding effectiveness (SE) also showed a similar trend and average EMI shielding of ?108 dB (3 mm) was observed for sample having 5 wt % MWCNT in the frequency range of 8.2–12.4 GHz (X‐band). The light weight and absorption dominated total SE of ?93 to ?108 dB of these composites indicate the usefulness of these materials for microwave shielding. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45370.  相似文献   

14.
Expanded graphite (EG)/polydimethylsiloxane (PDMS) composites with high thermal conductivity and high flexibility are prepared in this work. EG derived from natural graphite flake is infiltrated in PDMS prepolymer solution and then hot pressed in a steel mould at 80 °C for 2 h. Optical microscope and scanning electron microscope investigation reveals the interpenetrating network structures in the EG/PDMS composites. When mass fraction of EG increases to 10.0 wt %, the thermal conductivity of EG/PDMS reaches to 4.70 W/m K which should be attributed to the conductive path of graphite platelets. Meanwhile, the composites have excellent flexibility (the compressive modulus is 0.68 Mpa) because of its continuous PDMS network. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44843.  相似文献   

15.
The effects of hybrid fillers of carbon fiber (CF) and multiwall carbon nanotube (MWCNT) on the electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE), flame retardancy, and mechanical properties of poly(butylene terephthalate) (PBT)/poly(acrylonitrile-co-styrene-co-acrylate) (PolyASA) (70/30, wt %) with conductive filler composites were investigated. The CF was used as the main filler, and MWCNT was used as the secondary filler to investigate the hybrid filler effect. For the PBT/PolyASA/CF (8 vol %)/MWCNT (2 vol %) composite, a higher electrical conductivity (1.4 × 100 S cm−1) and EMI SE (33.7 dB) were observed than that of the composite prepared with the single filler of CF (10 vol %), which were 9.0 × 10−2 S cm−1 and 23.7 dB, respectively. This increase in the electrical properties might be due to the longer CF length and hybrid filler effect in the composites. From the results of aging test at 85 °C, 120 h, the electrical conductivity and EMI SE of the composites decreased slightly compared to that of the composite without aging. The results of electrical conductivity, EMI SE, and flame retardancy suggested that the composite with the hybrid fillers of CF and MWCNT showed a synergetic effect in the PBT/PolyASA/CF (8 vol %)/MWCNT (2 vol %) composite. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48162.  相似文献   

16.
The present research focuses on the preparation of an efficient material that acts as a deterrent to electromagnetic pollution. In this study, graphite and carbon fiber (CF) reinforced polypropylene (PP) composites (GCF) are prepared using a melt processing technique via a twin-screw extruder. The prepared composites were evaluated for mechanical, thermal, DC conductivity, and EMI shielding properties. There is a rise in the tensile strength (4.32%) and thermal stability (6.57%) of composites were recorded as compared to pure PP. The fractured morphology of the composites showed the breakdown of CF, leading to the improvement in the tensile strength of the composites. An increase in electrical conductivity was seen at maximum (GCF4) filler loading indicating 2.31 × 10?4 S/cm which is much better than the pure PP value (2.07 × 10?10 S/cm). The maximum value of shielding effectiveness is achieved at the maximum weight percentage of filler loading which is ?44.43 dB with a thickness of 2 mm covering the X-band (8.2–12.4 GHz).  相似文献   

17.
The conducting polymer composite material is desired to have a high dielectric constant and high dissipation factor in low and high frequency ranges, so that it can be used in charge storing devices, decoupling capacitors, and electromagnetic interference (EMI) shielding applications. Currently, on‐going research is trying to enhance the dielectric constant of ceramic powder‐polymer, metal powder‐polymer, and nanotube‐polymer composites in the low frequency region. In this article, we present the dielectric properties of polypropylene (PP)‐graphite (Gr) composites in low and radio frequency ranges. Furthermore, the EMI shielding properties of these composites are examined in the radio frequency range. The PP‐Gr composites were prepared by mixing and the hot compression mold technique. The electrical conductivity and dielectric constant of PP‐Gr composites with graphite volume fraction follow the power law model of percolation theory. The percolation threshold of the composites is estimated to be 0.0257 (~ 5wt % of Gr). The current of PP‐Gr composites as a function of voltage shows a nearly ohmic behavior above the percolation threshold. Shore‐D hardness of the composites is decreased with the addition of conducting filler. The PP‐Gr composites exhibit a high dielectric constant and high dissipation factor with the addition of graphite in low frequency and radio frequency regions, so they can be used in the proposed applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
In present study, polymer matrix nanocomposites based on polycarbonate as matrix and expanded graphite (EG) as reinforcement were fabricated using a simple solution method followed by hot pressing. Scanning electron microscopy revealed almost uniform dispersion and three dimensional networks of EG particles in the matrix. The dc and ac electrical conductivities of the nanocomposites increased with increasing EG content in the matrix. The electrical percolation threshold was observed between 1 and 2 wt % EG. The improvement in the conductivity of 10 wt % nanocomposite was found more than 13 orders of magnitude higher than that of pure matrix. The dielectric constant (at 1 MHz) of the nanocomposite containing 10 wt % EG was increased to about 137. The significant increase in electrical conductivity, dielectric constant, and dissipation factor for the nanocomposites might be good for the applications in antistatic/electromagnetic interference shielding applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47274.  相似文献   

19.
The electrical conductivity and electromagnetic interference (EMI) shielding effectiveness of the composites of polypropylene/poly(lactic acid) (PP/PLA) (70/30, wt %) with single filler of multiwall carbon nanotube (CNT) or hybrid fillers of nickel‐coated carbon fiber (CF) and CNT were investigated. For the single filler composite, higher electrical conductivity was observed when the PP‐g‐maleic anhydride was added as a compatibilizer between the PP and PLA. For the composite of the PP/PLA (70/30)/CF (20 phr)/CNT (5 phr), the composite prepared by injection molding observed a higher EMI shielding effectiveness of 50.5 dB than the composite prepared by screw extrusion (32.3 dB), demonstrating an EMI shielding effectiveness increase of 49.8%. The higher values in EMI shielding effectiveness and electrical conductivity of the PP/PLA/CF (20 phr)/CNT (5 phr) composite seemed mainly because of the increased CF length when the composites were prepared using injection molding machine, compared with the composites prepared by screw extrusion. This result suggests that the fiber length of the conductive filler is an important factor in obtaining higher values of electrical conductivity and EMI shielding effectiveness of the PP/PLA/CF/CNT composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45222.  相似文献   

20.
Superior conductive fillers reinforced polymer composites are ideal alternatives to graphitic and metallic materials in proton exchange membrane fuel cells (PEMFCs) for high thermal and electrical conductive bipolar plates. Polymer composites are known to be adversely influenced from high contact resistance thus to minimize such resistance, highly graphite-/graphene-filled polybenzoxazine (PBA) composites are developed in this work. A very low melt viscosity of benzoxazine resin with graphite loading as high as 83 wt % is used for the samples. With an addition of graphene platelet, thermal and electrical conductivities of the specimens having 75.5 wt % of graphite in a combination of 7.5 wt % of graphene are significantly enhanced to 14.5 W mK−1 and 323 S cm−1, respectively. Properties of highly graphite-/graphene-filled PBA composites exhibit most values exceed those requirements by the U.S. Department of Energy for PEMFCs applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47183.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号