首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New types of composite anion‐exchange membranes were prepared by blending of suspension‐produced poly(vinyl chloride) (S‐PVC) and poly(styrene‐co‐butadiene), otherwise known as styrene–butadiene rubber (SBR), as binder, along with anion‐exchange resin powder to provide functional groups and activated carbon as inorganic filler additive. Also, an ultrasonic method was used to obtain better homogeneity. In solutions with mono‐ and divalent anions, the effect of activated carbon and sonication on the morphology, electrochemical properties and selectivity of these membranes was elucidated. For all solutions, ion‐exchange capacity, membrane potential, permselectivity, transport number, ionic permeability, flux and current efficiency of the prepared membranes initially increased on increasing the activated carbon concentration to 2 wt% in the casting solution and then began to decrease. Moreover, the electrical resistance and energy consumption of the membranes initially decreased on increasing the activated carbon loading to 2 wt% and then increased. S‐PVC‐blend‐SBR membranes with additive showed a decrease in water content and a slight decrease in oxidative stability. Also, these membranes showed good monovalent ion selectivity. Structural images of the prepared membranes obtained using scanning optical microscopy showed that sonication increased polymer‐particle interactions and promoted the compatibility of particles with binder. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
Membrane solution composition is one of the important factors that determine properties of ion‐exchange membranes. In this study, PVC‐based heterogeneous cation‐exchange membranes were prepared by the solution casting method. Effects of a hydrophilic additive [poly(ethylene glycol), PEG400] and degree of polymerization of poly(vinyl chloride) (PVC) on the morphology and electrochemical properties of the cation‐exchange membranes were investigated. The results revealed that the hydrophilic additive can improve membrane properties, including water uptake (Wu), ion‐exchange capacity (IEC), conductivity, and permselectivity. The improvements might be associated with an increase in accessibility of functional sites in the membrane matrix due to a higher hydrophilicity, indicated by a reduction of water contact angle and the greater void fraction shown by scanning electron microscopy. However, the permselectivity slightly decreased when the additive concentration was increased further. Meanwhile, increasing the degree of polymerization and PVC concentration resulted in higher permselectivity and lower conductivity, which might be due to a better resin distribution and a lower void fraction. Overall, the prepared membranes had relatively good conductivities (up to ~2.5 mS/cm) and permselectivities (up to ~0.92). In general the conductivity increased with increasing Wu and IEC, while the permselectivity showed the opposite trends. This could be associated with the efficacy of Donnan exclusion indicated by the IEC/Wu ratio and the Donnan equilibrium constant of the cation (K+). © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46690.  相似文献   

3.
Polystyrene cation exchange membranes were prepared by a PVC‐based semi‐interpenetrating polymer network (IPN) method. The reaction behaviors during polymerization and sulfonation in the preparation method were investigated. The prepared membranes were characterized in terms of the physical and electrochemical properties. The membranes exhibited reasonable mechanical properties (tensile strength, 13 MPa, and elongation at break, 52%) for an ion‐exchange membrane with the ratio of polystyrene–divinylbenzene (DVB)/poly(vinyl chloride) (PVC) (RSt‐DVB/PVC) of below 0.9. Fourier transform infrared/attenuated total reflectance, differential scanning calorimetry, and scanning electron microscopy studies revealed the formation of a homogeneous membrane. The resulting membrane showed membrane electrical resistance of 2.0 Ω cm2 and ion‐exchange capacity of 3.0 meq/g dry membrane. The current–voltage (I–V) curves of the membrane show that the semi‐IPN polystyrene membranes can be properly used at a high current density, and that the distribution of cation‐exchange sites in the membrane was more homogenous than that in commercial membranes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1488–1496, 2003  相似文献   

4.
Chemical treatment is a facile method for improving electrochemical properties of a heterogeneous ion‐exchange membrane. In this work, polyvinylchloride (PVC)‐based heterogeneous cation‐exchange membrane is prepared by a dry–wet phase inversion process. The membrane is treated with a sulfuric acid solution in a room and a high temperature (80 °C). Effects of the treatment procedure and hydrophilic additive on membrane electrochemical properties are investigated. Chemically treated PVC and PVC/additive heterogeneous cation‐exchange membranes show a change in membrane electrochemical properties in terms of water uptake (Wu), conductivity, ion‐exchange capacity (IEC), and permselectivity (Ps). In general, Wu and conductivity increase after the chemical treatment. Significant improvement is observed when a high temperature is used. Meanwhile, the conductivity is more pronounced for PVC/additive membranes. The improvement may be associated with an increase in hydrophilicity. A significant increase in IEC is also observed for modified PVC/additive membrane. This may be associated with the removal or leaching of the additive during the treatment which in turn increases the portion of ion‐exchange resins in the membrane. Most of the modified membranes show a decrease in Ps. It may be due to a decrease in the effectiveness of Donnan effect indicated by Donnan equilibrium constant (K+). POLYM. ENG. SCI., 59:E219–E226, 2019. © 2018 Society of Plastics Engineers  相似文献   

5.
《分离科学与技术》2012,47(5):794-808
This research deals with the preparation of heterogeneous cation exchange membranes by solution-casting techniques using S-polyvinylchloride (S-PVC) and polycarbonate (PC) as binders, cation exchange resin powder as functional groups agent, and tetrahydrofuran as solvent. The effects of polymer binder type and resin ratio loading on morphological, electrochemical, and mechanical properties of prepared membranes were studied and evaluated. Scanning electron microscopy and scanning optical microscopy were used for the membranes structure investigation. Images showed that increase of resin loading in casting solution resulted in a highly uniform phase forming. Moreover resin particles were distributed more uniformly in polycarbonate membranes compared to the polyvinylchloride ones. The water content, surface hydrophilicity, ion exchange capacity, ion concentration, permselectivity, membrane potential, surface charge density, transport number, ionic permeability, flux of ions, and current efficiency were enhanced for the prepared membranes by increase in resin ratio loading. Moreover, the increase of resin ratio in casting solution reduced the mechanical strength of the prepared membranes. The mechanical strength of S-PVC membrane was higher than the PC ones. Furthermore, the increment of resin content caused some decreases in areal electrical resistance and oxidative stability of the prepared membranes. Home-made membranes exhibited appropriate electrochemical properties in comparison with a tested commercial heterogeneous cation exchange membrane in the same experimental conditions. Swelling of the prepared membranes was also negligible compared to the commercial type.  相似文献   

6.
Enantioselective membrane was prepared using ethyl cellulose (EC) as membrane material. The flux and permselective properties of membrane using aqueous solution of (R,S)‐2‐phenyl‐1‐propanol as feed solution was studied. The employed membrane process was a pressure driven process. All kinds of important conditions including preparation and operation of membranes were investigated in this experimentation. When the membrane was prepared with 18 wt % EC, 20 wt % N,N‐dimethylformamide in casting solution, 13 min evaporation time and 0°C temperature of water bath for the gelation of the membrane, and the operating pressure and feed solution of (R,S)‐2‐phenyl‐1‐propanol were 0.2 MPa and 1.5 mg/mL, respectively, over 90% of enantiomeric excess (e.e.) and 44.2 (mg/m2 h) of flux were obtained. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
A series of six composite membranes was prepared with two polymer electrolytes and three inorganic fillers, namely, silica, titania, and zirconia by a solution casting method. Two polymer electrolytes, that is, anion‐exchange membranes, were prepared from polystyrene‐block‐poly(ethylene‐ran‐butylene)‐block‐polystyrene (PSEBS) and polysulfone by chloromethylation and quaternization. A preliminary characterization of the ionic conductivity, methanol permeability, and selectivity ratio was done for all of the prepared composite membranes to check their suitability to work in direct methanol alkaline membrane fuel cells (DMAMFCs). The DMAMFC performance was analyzed with an in‐house fabricated single cell unit with a 25‐cm2 area. Maximum performance was achieved for the composite membrane quaternized PSEBS/7.5% TiO2 and was 74.5 mW/cm2 at 60°C. For the comparison purposes, a commercially available anion‐exchange membrane (Anion Membrane International‐7001) was also investigated throughout the study. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
New ion‐exchange acid/base‐blend (SPPO/PBI) membranes were prepared by mixing N,N‐dimethylacetamide (DMA) solutions of sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO) in the ammonium form and of polybenzimidazole (PBI), casting the solution as a thin film, evaporating the solvent, and treating the membrane with aqueous hydrochloric acid. The resulting membranes were found insoluble in DMA. The preliminary tests of the membranes were carried out in an H2/O2 fuel cell at room temperature. Their performance in the fuel cell increased with the increase in the concentration of SPPO sulfonic acid groups in the blend, but the membranes formed with the highly sulfonated SPPO alone or predominanting, which swelled excessively in water, did not give reproducible results, and their performance was usually inferior to that of the membranes having an optimum ratio of both components. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1118–1127, 2002  相似文献   

9.
Our target in this study was the preparation of electrodialysis ion‐exchange membranes with appropriate properties for applications in water recovery and treatment. Composite mixed‐matrix, anion‐exchange membranes were prepared by a solution casting technique with acrylonitrile–butadiene–styrene as a base binder, resin powder as a functional group agent, activated carbon as an adsorptive filler, and an Ag nanolayer as a surface modifier. The Ag nanolayer was used with a magnetron sputtering method. The effect of the nanolayer deposition rate (Rq) and substrate and annealing temperatures on the physicochemical characteristics of the membranes were studied. The X‐ray diffraction results show that average grain size of the nanolayer and membrane crystallinity were improved with increasing Rq. The atomic force microscopy and scanning electron microscopy results show that the membrane roughness was enhanced with increasing Rq. The height distribution results also show the best height distribution for the modified membrane at low Rq. The selectivity and flux decreased with increasing nanolayer Rq in the membranes. The selectivity was also decreased initially with increases in the substrate and annealing temperatures from 300 to 325 K in the membranes and then showed an increasing trend. An opposite trend was found for flux with variations in the temperature. The modified membrane containing a 20‐nm Ag nanolayer at low Rq showed better performance compared to the other modified membranes and the pristine one. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40025.  相似文献   

10.
The structure and performance of modified poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐co‐HFP) ultra‐filtration membranes prepared from casting solutions with different concentrations of poly(vinyl pyrrolidone) (PVP) were investigated in this study. Membrane properties were studied in terms of membrane compaction, pure water flux (PWF), water content (WC), membrane hydraulic resistance ( R m), protein rejection, molecular weight cut‐off (MWCO), average pore size, and porosity. PWF, WC, and thermal stability of the blend membranes increased whereas the crystalline nature and mechanical strength of the blend membranes decreased when PVP additive concentration was increased. The contact angle (CA) decreased as the PVP concentration increased in the casting solution, which indicates that the hydro‐philicity of the surface increased upon addition of PVP. The average pore size and porosity of the PVdF‐co‐HFP membrane increased to 42.82 Å and 25.12%, respectively, when 7.5 wt% PVP was blended in the casting solution. The MWCO increased from 20 to 45 kDa with an increase in PVP concentration from 0 to 7.5 wt%. The protein separation study revealed that the rejection increased as the protein molecular weight increased. The PVdF‐co‐HFP/PVP blended membrane prepared from a 7.5 wt% PVP solution had a maximum flux recovery ratio of 74.3%, which explains its better antifouling properties as compared to the neat PVdF‐co‐HFP membrane. POLYM. ENG. SCI., 55:2482–2492, 2015. © 2015 Society of Plastics Engineers  相似文献   

11.
Acrylic acid (AA)‐g‐polypropylene (PP) membranes were prepared by grafting AA on to a microporous PP membrane via plasma‐induced graft polymerization. The grafting of AA to the PP membrane was investigated using Fourier transform infrared spectroscopy (FTIR). Pore‐filling of the membranes was confirmed by field emission‐scanning electron microscopy (FESEM) and energy dispersing X‐ray (EDX). Ion exchange capacity (IEC), membrane electric resistance, transport number and water content were measured and analyzed as a function of grafting reaction time. The prepared AA‐g‐PP membranes showed moderate electrochemical properties as a cation‐exchange membrane. In particular, membranes with a degree of grafting of 155% showed good electrical properties, with an IEC of 2.77 mmol/g dry membrane, an electric resistance of 0.4 Ω cm2 and a transport number of 0.96. Chronopotentiometric measurements indicated that AA‐g‐PP membranes, with a high IEC had a sufficient conducting region in the membrane. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
We prepared polyvinylchloride based nanocomposite heterogeneous cation exchange membranes by solution casting technique using cation exchange resin powder as functional groups agent and tetrahydrofuran as solvent. Silver nanoparticles were also used as fillers in membrane fabrication. The effect of silver nanoparticles concentration in casting solution on membrane physico/chemical and antibacterial characteristics was studied. The SEM images showed compact structure for the modified membranes. X-ray diffraction results also revealed that membrane crystallinity was clearly changed by increase of nanoparticle concentration. Membrane selectivity and transport number were enhanced initially by increase in nanoparticle content up to 4%wt in prepared membrane, and then showed decreasing trend by more increase in additive concentration from 4 to 8%wt. Selectivity and transport number were enhanced another time by further increase in nanoparticle loading ratio from 8 to 16%wt. Opposite trend was found for the membranes’ average grain size by variation in additive content. Ionic flux was also clearly enhanced by using Ag nanoparticles in membrane matrix. Moreover, modified membranes showed good ability in decrease of Escherichia coli growth rate.  相似文献   

13.
《分离科学与技术》2012,47(16):2308-2321
Polycarbonate heterogeneous cation exchange membranes were prepared by solution casting techniques using tetrahydrofuran as solvent and cation exchange resin powder as functional groups agent. The effect of resin ratio loading on properties of prepared membranes was studied. Also, transport properties of the prepared membranes for mono and bivalent cations were evaluated. Scanning electron microscopy and scanning optical microscopy were used for the membranes structure investigation. Images showed that increase of resin ratio in casting solution results in a highly uniform phase to form. Formation and propagation of voids, cavities, and cracks were facilitated through higher resin ratio loading. The water content, surface hydrophilicity, specific surface area, ion exchange capacity, ion concentration, ionic permeability, conductivity, flux, and current efficiency of the membranes were enhanced and their energy consumption, oxidative stability, and mechanical strength were declined by increase of resin ratio loading. Moreover, membranes showed higher ionic flux, current efficiency, and lower energy consumption for sodium ions in comparison with bariums. Furthermore, with the increase of resin loading, permselectivity, membrane potential and transport number of membranes were improved for monovalent ions and diminished for bivalent ones. Also, membranes exhibited lower membrane potential, selectivity, and transport number for bivalent ions in comparison with the monovalent type.  相似文献   

14.
To regulate the polymer–diluent interaction and control the viscosity of the casting solution, diphenyl ketone (DPK) and a N,N‐dimethylacetamide/N,N‐dimethylformamide mixture were selected as a combined diluent. Poly(vinyl chloride) (PVC) utlrafiltration membranes, which had sufficient mechanical properties for their practical applications because of their bicontinuous spongy structure, were prepared by a combined process of thermally induced phase separation and non‐solvent‐induced phase separation. The phase‐separation mechanism was analyzed. In an air bath, the cast nascent solution immediately transformed into a transparent gel, and liquid–liquid phase separation was induced by a sudden drop in the temperature before crystallization. An ice–water bath was used to coagulate the membrane. The effects of the DPK and PVC concentrations on the membrane structures and performances were mainly investigated. The results show that an increase in the DPK content made the membrane pores change from fingerlike to spongy. Fully spongy pores formed, and the pores size decreased with increasing PVC concentration. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42953.  相似文献   

15.
Hydroxyl‐terminated polybutadiene (HTPB) was blended into a poly(ether sulfone) (PES) casting solution used to prepare ultra‐filtration (UF) membranes via the phase inversion technique. The membranes were then characterized by contact angle (CA) measurements and UF experiments. The CA was increased with the addition of HTPB in the PES membrane and also by lowering the gelation bath temperature. It was observed that the CA was lower for membranes prepared with N‐methyl‐2‐pyrrolidinone (NMP) as the solvent than those using N,N‐dimethylacetamide (DMAc) as solvent. The flux values were higher for membranes made using a 4°C gelation bath when compared with the ambient temperature ((25 ± 1)°C) irrespective of the cast solvents, NMP or DMAc. The flux values were much higher and the solute separations were lower for the HTPB‐based PES membranes than for the pure PES membrane, when the membranes were cast with DMAc as a solvent. On the other hand, both flux and separation values were much lower for the HTPB‐based PES membranes than for the pure PES membrane, when the membranes were cast using NMP. Atomic force microscopy and scanning electron microscopy were used for morphological characterization and the correlation of topography/photography with the performance data was also examined. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2292–2303, 2006  相似文献   

16.
The copolymer poly(vinylidene fluoride)‐graft‐poly(4‐vinylpyridine) (PVDF‐g‐P4VP) was prepared through the graft copolymerization of poly(vinylidene fluoride) with 4‐vinylpyridine. Through the blending of the PVDF‐g‐P4VP copolymer with poly(N‐isopropylacrylamide) (PNIPAm) in an N‐methyl‐2‐pyrrolidone solution, PVDF‐g‐P4VP/PNIPAm membranes were fabricated by phase inversion in aqueous media. Elemental analyses indicated that the blend concentration of PNIPAm in the blend membranes increased with an increase in the blend ratio used in the casting solution. Scanning electron microscopy revealed that the membrane surface tended to corrugate at a low PNIPAm concentration and transformed into a smooth morphology at a high PNIPAm concentration. The surface morphology and pore size distribution of the microfiltration membranes could be regulated by the blend concentration of the casting solution, temperature, pH, and ionic strength of the coagulation bath. X‐ray photoelectron spectroscopy revealed a significant enrichment of PNIPAm on the membrane surface. The flux of aqueous solutions through the blend membranes exhibited a pH‐ and temperature‐dependent behavior. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4089–4097, 2006  相似文献   

17.
A novel low‐cost SiO2/Polyvinylchloride (PVC) membrane with different nano‐SiO2 particles loading (0–4 wt %) was prepared by the phase‐inversion process. The optimum nano‐SiO2 dosage was determined as 1.5 wt % based on the casting solution compositions, the membranes' mechanical properties and hydrophilicities, the pure water fluxes, microstructures, and absorption of protein. Compared with the bare membrane, the membrane with 1.5 wt % nano‐SiO2 addition presented better capabilities against the protein absorption and bacterial attachment, better antifouling performance, and higher flux recovery ratio in filtration of the supernatant liquor which collected from a secondary sedimentation tank in a municipal wastewater plant. The SiO2/PVC membranes have applicable potential in the municipal wastewater treatment for their low price, good antifouling performance and high removal efficiencies of SS (over 97.2%), COD (up to 82.9%) and total bacteria (more than 93.6%). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41267.  相似文献   

18.
Functionalized polymer membranes have been used as sensor materials for fabrication of electronic tongue. Here, we report the synthesis and characterization of a novel poly(N‐[4H‐1,2,4‐triazol‐4‐yl]acrylamide) (PNTA) for liquid phase aliphatic alcohol sensing in the form of membranes prepared after blending with poly(vinyl chloride) (PVC). Three PNTA‐PVC based membranes were prepared for sensing of six aliphatic alcohols. Polymer membranes were characterized by spectroscopic techniques. Polar groups on PNTA molecules contribute to the alcohol sensing characteristics. The membrane electric potential, generated by the interaction between membrane surface and aqueous aliphatic alcohols, was monitored with the developed multi‐channel electrode based prototype sensing system (MEBPSS). The polymer membranes showed distinct and repeatable response patterns toward different aliphatic alcohols. Among them PNTA‐PVC12 membrane showed maximum discrimination ability due to the PNTA molecules on the membrane surface with highest charge density as ascertained from field emission scanning electron microscopic studies. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44675.  相似文献   

19.
Poly(vinyl chloride) (PVC) was irradiated by electron beam in vacuum at 20 KGy to produce living free radicals, and then reacted with acrylic acid (AA) in solution to obtain the PVC‐g‐AA copolymers. The copolymers were characterized by Fourier transform infrared spectroscopy. Porous membranes were prepared from copolymers by the phase inversion technique. The morphology of PVC‐g‐AA membranes was studied by field emission scanning electron microscopy. The mean pore size and pore size distribution were determined by a mercury porosimeter. The mean pore size was 0.19 μm, and the bulk porosity was 56.02%. The apparent static water contact angle was 89.0°. The water drop penetration rate was 2.35 times to the original membrane. The maximum stress was 4.10 MPa. Filtration experiments were carried out to evaluate the fouling resistance of the PVC‐g‐AA membrane. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

20.
In this study, self‐crosslinking core–shell latexes comprising copolymerized perfluorethyl groups and a novel flame retardant based on phosphazene derivative were prepared by the semi‐continuous non‐seeded emulsion polymerization of 2,2,2‐trifluorethyl methacrylate, methyl methacrylate, butyl acrylate, methacrylic acid, and hexaallylamino‐cyclo‐triphosphazene as main monomers. For interfacial crosslinking, diacetone acrylamide was copolymerized into the shell layer of latex particles to provide sites for subsequent reaction with adipic acid dihydrazide. The heterogeneous cation‐exchange membranes were obtained by dispersing commercial strong acid cation‐exchange resin powder in the latex binder and casting the mixture followed by keto‐hydrazide crosslinking reaction. It was found that the increased concentration of fluorine atoms and phosphazene units in the macromolecular structure of interfacially crosslinked emulsion polymers resulted in a significant enhancement of their flame resistance and shape stability in aqueous environment. Moreover, the easily prepared heterogeneous cation‐exchange membranes based on latexes with higher amounts of fluorine and phosphazene units were shown to exhibit satisfactory physicochemical and electrochemical properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45467.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号