首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recycling or reuse of waste rubber by means of blending together with polymeric materials in addition of filler such as hybrid carbon black and silica (CB/Sil) to a polymer system can provides an opportunity to explore alternative product specifications. Therefore, in this work the investigation of recycled rubber blends based on styrene butadiene rubber/recycled acrylonitrile butadiene rubber (SBR/NBRr) blends reinforced with 50/0, 40/10, 30/20, 20/30, 40/10, 0/50 phr of carbon black/silica (CB/Sil) hybrid filler treated with and without silane coupling agent (Si69) were determined. Cure characteristics, tensile properties, and morphological behavior of selected SBR/NBRr blends at a fix 85/15 blend ratio were evaluated. Results showed that, cure time t90, minimum torque (ML), and maximum torque (MH) of CB/Sil hybrid fillers filled SBR/NBRr blends with and without Si69 increased as silica content increased. However, t90 and ML of SBR/NBRr blends with Si69 were lower than without Si69 except for (MH). The optimum scorch time (ts2) of SBR/NBRr blends with and without Si69 was obtained at 30/20 phr of CB/Sil hybrid filler. However, ts2 of SBR/NBRr blends with Si69 were longer than SBR/NBRr blends without Si69. The incorporation of Si69 has improved the tensile properties [(tensile strength, elongation at break (Eb), stress at 100% elongation (M100), and stress at 300% elongation (M300)] of CB/Sil hybrid fillers filled SBR/NBRr blends. These properties were influenced by the degree of crosslinked density as the silica content is increased. Scanning electron microscopy (SEM) of the tensile fracture surfaces indicated that, with the addition of Si69 improved the dispersion of hybrid fillers and NBRr in SBR/NBRr matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
The fluorine rubber nanocomposites were prepared by using the silane‐coupling agents treated silica and diatomite, in which 3‐amino propyltriethoxysilane (KH550), 3‐mercapto‐propyl trimethoxysilane (KH590), and bis‐(γ‐triethoxysilylpropyl)‐tetrasulfide (Si69) of the coupling agent were used as the filler modifiers to increase the compatibility between filler and fluorine rubber. The structure and morphology of the composites were investigated by Fourier transform infrared spectroscopy and scanning electron microscopy. The Tg and thermal stability of the composites were investigated by dynamic mechanical analysis and thermogravimetric analysis. The results showed that the best coupling agent was KH550 and 2 phr (parts per hundred rubber). The KH550‐modified compound filler was crosslinked with fluorine rubber, and the compatibility between filler and fluorine rubber was improved and further confirmed to improve the thermal properties of fluorine rubber with the KH550‐modified filler. J. VINYL ADDIT. TECHNOL., 26:55–61, 2020. © 2019 Society of Plastics Engineers  相似文献   

3.
The utilization of nitrile glove waste will spark a great deal of interest in the rubber industry in developing cost-effective techniques to convert waste and used rubber into a processable form. Blends of styrene butadiene rubber/recycled acrylonitrile butadiene rubber (SBR/NBRr) reinforced at 85/15 blend with different ratios of a carbon black/silica (CB/Sil) hybrid filler (50/0, 40/10, 30/20, 20/30, 40/10, 0/50 phr) were tested either with or without the silane coupling agent, Si69. Results showed that the increased thermal stability of blends with Si69 is highly related to the formation of crosslinks between the filler. Thermogravimetric (TG) thermograms showed that the percentage of char residue for blends with Si69 was higher than without Si69. The differential scanning calorimetry (DSC) thermograms of both blends revealed a glass transition temperature (Tg) between 65.0°C and 66.9°C. At all blend ratios, the fatigue life of blends with Si69 was better than blends without Si69. After six months’ exposure to natural weather, blends with Si69 exhibited better tensile properties, retention, and morphology compared to blends without Si69.  相似文献   

4.
This work examines the mechanisms by which magadiite (MGD), a synthetic layered silicate, acts as an active filler to provide high levels of mechanical reinforcement in styrene‐butadiene rubber (SBR) composites. Cetyltrimethylammonium (CTA+) expands the MGD layer spacing and promotes intercalation of SBR and silane coupling agent (Si69); the resulting CMGD/SBR composites have greater tensile moduli than comparable silica/SBR composites. CMGD was reacted in solution with Si69 (or MPTES) to prepare “pre‐grafted” MGD with varying levels of interlayer silane functionalization (SMGD). If the silane graft density is relatively low, the resulting SMGD/SBR composite has mechanical properties comparable to CMGD composites prepared with Si69 added during batch mixing. However, SMGD with high silane graft density does not permit SBR intercalation and produces composites with inferior mechanical properties, demonstrating the necessity of silane‐mediated interlayer grafting. Omitting Si69 from the formulation dramatically reduces the level of mechanical reinforcement as measured by DMA and tensile testing. Adding extra bulk sulfur (to replace sulfur omitted with Si69) does not produce composites with mechanical properties comparable to CMGD/SBR or SMGD/SBR prepared with Si69. This work demonstrates that silane‐mediated SBR‐MGD grafts within the MGD interlayer space are essential for achieving high levels of mechanical reinforcement in MGD/SBR composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45025.  相似文献   

5.
The incompatibility between hydrophilic silica and hydrophobic rubber is an important problem on using silica in nonpolar rubber. In this study, hydroxyl telechelic natural rubber (HTNR) that contains hydroxyl‐terminated groups was introduced into silica‐reinforced natural rubber (NR) in order to improve the bonding strength between rubber and silica. The properties of silica‐reinforced NR compounds and vulcanizates as a function of varying silica contents were evaluated at a fixed HTNR concentration at 8% wt/wt of silica content. The results show that the improvement of silica dispersion and decreasing of filler–filler interactions (Payne effect) were obtained in the NR compounds and vulcanizates with HTNR addition. The enhancements in tensile properties, crosslink density, abrasion resistance, heat build‐up, and thermal properties of the silica‐reinforced NR vulcanizates with added HTNR confirmed that HTNR performed good as interfacial modifier of silica. In the study, the optimum properties of silica‐reinforced NR vulcanizate were achieved at 30 phr silica with 2.4 phr HTNR. However, HTNR still showed poorer efficiency than the synergy between commercial silane coupling agent, bis [3‐(triethoxysilyl) propyl] tetrasulphide (TESPT) and diphenylguanidine (DPG) when used in silica‐reinforced NR vulcanizate. J. VINYL ADDIT. TECHNOL., 26:291–303, 2020. © 2019 Society of Plastics Engineers  相似文献   

6.
Natural silica in fly ash (FA) particles of 30 and 60 phr were incorporated as reinforcing filler in natural rubber (NR) compounds. Improvements of cure characteristics and mechanical properties of the FA/NR composites were expected by surface treatment of the FA particles, this being carried out using various contents of bis‐(3‐triethoxysilylpropyl) tetrasulfane (Si69), as a chemical silane coupling agent, and sodium hydroxide (NaOH) solution. The results suggested that the Si69 coupling agent was a satisfactory property promoter in the FA/NR composites through C S bonding with rubber molecules and siloxane linkages with FA particles. Using NaOH solution did not improve the mechanical properties of the composites. The mechanical properties of the FA/NR composites appeared to increase at low Si69 concentrations of 2.0–4.0 wt%, but decreased at high Si69 loadings of 6.0–8.0 wt%. The decrease in mechanical properties resulted from a reduction of crosslink density and a formation of flexible polysiloxane from the self‐condensation reaction of the Si69. The presence of Si69 was observed to interfere with the sulphur crosslink formation. No synergetic effect on the properties of the rubber composites was observed when using a mixture of NaOH and Si69. This article recommends concentrations of 2.0–4.0 wt% Si69 to be introduced into the FA/NR composites to achieve the optimum properties. POLYM. COMPOS., 27:30–40, 2006. © 2005 Society of Plastics Engineers  相似文献   

7.
In this article, nano‐zinc oxide (ZnO) filled ethylene propylene diene monomer (EPDM) composites are prepared, and the mechanical (static and dynamic) properties and thermal conductivity are investigated respectively, which are further compared with the traditional reinforcing fillers, such as carbon black and nano‐silica. Furthermore, influence of in‐situ modification (mixing operation assisted by silane at high temperature for a certain time) with the silane‐coupling agent Bis‐(3‐thiethoxy silylpropyl)‐tetrasufide (Si69) on the nano‐ZnO filled composites is as well investigated. The results indicate that this novel reinforcing filler nano‐ZnO can not only perform well in reinforcing EPDM but can also improve the thermal conductivity significantly. In‐situ modification with Si69 can enhance the interfacial interaction between nano‐ZnO particles and rubber matrix remarkably, and therefore contribute to the better dispersion of filler. As a result, the mechanical properties and the dynamic heat build‐up of the nano‐ZnO filled composites are improved obviously by in‐situ modification, without influencing the thermal conductivity. In comparison with traditioanl reinforcing fillers, in‐situ modified nano‐ZnO filled composites exhibit the excellent performance in both mechanical (static and dynamic) properties and better thermal conductivity. In general, our work indicates that nano‐ZnO, as the novel thermal conductive reinforcing filler, is suitable to prepare elastomer products serving in dynamic conditions, with the longer expected service life. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Natural rubber was reinforced with untreated sisal and oil palm fibers chopped to different fiber lengths. The influence of fiber length on the mechanical properties of the hybrid composites was determined. Increasing the fiber length resulted in a decrease in the properties. The effects of concentration on the rubber composites reinforced with sisal/oil palm hybrid fibers were studied. Increasing the concentration of fibers resulted in a reduction in the tensile strength properties and tear strength but an increase in the modulus of the composites. Fiber breakage analysis was evaluated. The vulcanization parameters, processability characteristics, and stress–strain properties of these composites were analyzed. The extent of fiber alignment and the strength of the fiber–rubber interface adhesion were analyzed from the anisotropic swelling measurements. Scanning electron microscopy studies were performed to analyze the fiber/matrix interactions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2305–2312, 2004  相似文献   

9.
Natural rubber (NR) composites highly filled with nano‐α‐alumina (nano‐α‐Al2O3) modified in situ by the silane coupling agent bis‐(3‐triethoxysilylpropyl)‐tetrasulfide (Si69) were prepared. The effects of various modification conditions and filler loading on the properties of the nano‐α‐Al2O3/NR composites were investigated. The results indicated that the preparation conditions for optimum mechanical (both static and dynamic) properties and thermal conductivity were as follows: 100 phr of nano‐α‐Al2O3, 6 phr of Si69, heat‐treatment time of 5 min at 150°C. Furthermore, two other types of fillers were also investigated as thermally conductive reinforcing fillers for the NR systems: (1) hybrid fillers composed of 100 phr of nano‐α‐Al2O3 and various amounts of the carbon black (CB) N330 and (2) nano‐γ‐Al2O3, the particles of which are smaller than those of nano‐α‐Al2O3. The hybrid fillers had better mechanical properties and dynamic performance with higher thermal conductivity, which means that it can be expected to endow the rubber products serving under dynamic conditions with much longer service life. The smaller sized nano‐γ‐Al2O3 particles performed better than the larger‐sized nano‐α‐Al2O3 particles in reinforcing NR. However, the composites filled with nano‐γ‐Al2O3 had lower thermal conductivity than those filled with nano‐α‐Al2O3 and badly deteriorated dynamic properties at loadings higher than 50 phr, both indicating that nano‐γ‐Al2O3 is not a good candidate for novel thermally conductive reinforcing filler. POLYM. COMPOS., 37:771–781, 2016. © 2014 Society of Plastics Engineers  相似文献   

10.
Rice husk ash is mainly composed of silica and carbon black remaining from incomplete combustion. Both silica and carbon black have long been recognized as the main reinforcing fillers used in the rubber industry to enhance certain properties of rubber vulcanizates, such as modulus and tensile strength. In this study, two grades of rice husk ash (low‐ and high‐carbon contents) were used as filler in natural rubber. Comparison was made of the reinforcing effect between rice husk ashes and other commercial fillers such as talcum, china clay, calcium carbonate, silica, and carbon black. Fourier transform infrared spectroscopy (FTIR) analysis was employed to study the presence of functional groups on the ash surface. The effect of silane coupling agent, bis(3‐triethoxysilylpropyl)tetrasulfane (Si‐69), on the properties of ash‐filled vulcanizates was also investigated. It was found that both grades of rice husk ash provide inferior mechanical properties (tensile strength, modulus, hardness, abrasion resistance, and tear strength) in comparison with reinforcing fillers such as silica and carbon black. However, the mechanical properties of the vulcanizates filled with rice husk ash are comparable to those filled with inert fillers. The addition of silane‐coupling agent has little effect on the properties of the ash‐filled vulcanizates. This is simply due to the lack of silanol groups on the ash surface. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2485–2493, 2002  相似文献   

11.
The fatigue resistance of silica‐filled natural rubber (NR) mixes modified with phosphorylated cardanol prepolymer (PCP) was studied in comparison with similar compositions without PCP and with those containing the same dosage of a silane coupling agent (Si‐69). Considerable improvement in the fatigue resistance was observed for the PCP‐modified NR vulcanizate containing 20 phr of silica compared with the unmodified and Si‐69 modified vulcanizates. In addition, the tear strength of the PCP‐modified NR vulcanizate was higher than that of the others. Atomic force microscopy and the scanning electron microscopy of the vulcanizates showed better dispersion of silica particles in the NR matrix in the presence of PCP than in the unmodified and Si‐69‐modified NR vulcanizates. It is assumed that, at a dosage of 5 phr, PCP functions as a coupling agent between NR and the silica particles thereby improving the filler dispersion and consequently the mechanical properties of the vulcanizate. Copyright © 2005 Society of Chemical Industry  相似文献   

12.
于晓波  刘峰  王小菊  刘震  李龙  赵国 《橡胶科技》2022,20(3):0131-0136
试验研究硅烷偶联剂Si69,Si75和KH560对白炭黑填充溴化丁基橡胶(BIIR)/天然橡胶(NR)并用胶性能的影响。结果表明:随着硅烷偶联剂Si75或KH560用量的增大,胶料的挤出膨胀率呈增大趋势,门尼粘度和F;减小,Payne效应减弱,定伸应力和拉伸强度呈增大趋势,拉断伸长率和撕裂强度呈减小趋势,加工性能和老化后耐屈挠性能改善;硅烷偶联剂Si75和KH560能够明显改善白炭黑填充BIIR/NR并用胶的加工性能和老化后的耐屈挠性能。  相似文献   

13.
The reinforcement of silicone rubber (SR) imparted by different types of fillers was investigated. Glass fiber (GF), wollastonite and fluoro rubber (FR) as nontraditional filler for rubber were compounded SR and mechanical properties of the prepared composites were evaluated. The addition of silane pretreated GF and wollastonite into SR, tensile strength, abrasion resistance and tear strength of the composites improved considerably. The improvement in the properties was assigned to an increased interaction between the filler and the polymer matrix. For the SR/FR composites system, the elongation at break was increase with increasing concentrations of FR due to sponge like structure resulting from poor compatibility between the two components. To investigate the production potential of extrusion processing method, prepared composites were extruded in a rod type sample. During the curing stage, GF, wollastonite and FR lead to the formation of void in the matrix resin. When GF and wollastonite were treated with silane, the void formations were reduced significantly. The silane treatment process improves not only mechanical strength but also processibility of SR composites in dry conditions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
The effect of HP loading on the curing characteristics and mechanical properties of filled SBR and EPDM composites was investigated using bis-(3-triethoxysilylpropyl) tetrasulfide (Si69) as coupling agent. For all composites, 20 phr (part per one hundred parts of rubber) silica was used. The addition of HP enhances the vulcanization process of composites filled with silica. The hybrid reinforcement of HP and silica imparts good stiffness and toughness to filled rubber composites. An excess of HP will tend to form agglomerates in the rubber matrix, which adversely affects the silica-rubber matrix interfacial interaction, and consequently lowers the overall mechanical properties. The HP distribution and filler-rubber matrix interaction, which were analyzed by scanning electron microscopy and equilibrium swelling, explained well the changes in mechanical properties of composites filled with hybrid fillers. Dynamic mechanical analysis indicated that the composites exhibited higher Payne effect and storage modulus, and lower tanδmax value with an increase of HP loading.  相似文献   

15.
The main objective of this investigation was to study and compare the thermal rigidity, thermal stability, and processability of poly(vinyl chloride) (PVC) composites filled with single fillers of talc and uncoated ground CaCO3 (SM 90) or a hybrid filler consisting of talc/SM 90. To produce the composites, the PVC resin, fillers, and other additives were dry‐blended in a laboratory mixer before being milled into sheets by using a two‐roll mill. Test specimens were prepared by compression molding, after which the thermal properties and processability of the composites were determined. Single and hybrid filler loadings used were fixed at 30 phr (parts per hundred parts of resin). Talc‐filled PVC composite showed slightly better thermal stability and rigidity than the composite filled with SM 90, and its thermal stability and rigidity slightly decreased with SM 90 content increasing from 5 to 25 phr in order to replace talc filler in the hybrid composites. The fusion time of talc‐filled PVC composite was shorter than that of SM 90‐filled PVC composite; thus, the fusion time of hybrid composites increased with increasing SM 90. The fusion torque showed an opposite behavior. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

16.
Curing characteristics, tensile properties, morphological studies of tensile fractured surfaces using scanning electron microscopy (SEM), and the extent of rubber filler interactions of rattan‐powder‐filled natural rubber (NR) composites were investigated as a function of filler loading and silane coupling agent (CA). NR composites were prepared by the incorporation of rattan powder at filler loading range of 0–30 phr into a NR matrix with a laboratory size two roll mill. The results indicate that in the presence of silane CA, scorch time (ts2), and cure time (t90) of rattan‐powder‐filled NR composites were shorten, while, maximum torque (MH) increased compared with NR composites without silane CA. Tensile strength and tensile modulus of composites were enhanced whereas elongation at break reduced in the presence of silane CA mainly due to increase in rubber‐filler interaction. It is proven by SEM studies that the bonding between the filler and rubber matrix has improved. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
This review article is aimed at reporting the recent development of hybrid fillers used in vulcanized rubber. This review will consider the synergistic effect of rubber hybrid composites that consist exclusively of conventional fillers; carbon black and/or silica as the primary filler, which are combined with secondary fillers from various sources. The discussions are mainly focused on the analyses and comparisons of the curing characteristics, morphology, and mechanical properties of the rubber composite-filled hybrid fillers. The compatibility and the existence of synergistic effects between the different types of fillers show the potential for development and application in rubber industries.  相似文献   

18.
In this study, we investigated the effects of untreated precipitated silica (PSi) and fly ash silica (FASi) as fillers on the properties of natural rubber (NR) and styrene–butadiene rubber (SBR) compounds. The cure characteristics and the final properties of the NR and SBR compounds were considered separately and comparatively with regard to the effect of the loading of the fillers, which ranged from 0 to 80 phr. In the NR system, the cure time and minimum and maximum torques of the NR compounds progressively increased at PSi loadings of 30–75 phr. A relatively low cure time and low viscosity of the NR compounds were achieved throughout the FASi loadings used. The vulcanizate properties of the FASi‐filled vulcanizates appeared to be very similar to those of the PSi‐filled vulcanizates at silica contents of 0–30 phr. Above these concentrations, the properties of the PSi‐filled vulcanizates improved, whereas those of the FASi‐filled compounds remained the same. In the SBR system, the changing trends of all of the properties of the filled SBR vulcanizates were very similar to those of the filled NR vulcanizates, except for the tensile and tear strengths. For a given rubber matrix and silica content, the discrepancies in the results between PSi and FASi were associated with filler–filler interactions, filler particle size, and the amount of nonrubber in the vulcanizates. With the effect of the FASi particles on the mechanical properties of the NR and SBR vulcanizates considered, we recommend fly ash particles as a filler in NR at silica concentrations of 0–30 phr but not in SBR systems, except when improvement in the tensile and tear properties is required. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2119–2130, 2004  相似文献   

19.
Surface treatment of cellulose fibers was performed with maleated high oleic sunflower oil (MSOHO). The MSOHO‐treated cellulose fibers and unmodified cellulose fibers were dispersed in styrene butadiene rubber (SBR) using a two roll mill. Vapor grown carbon nanofibers (VGCNF) were also incorporated at only one parts per hundred rubber (phr) in unmodified cellulose fibers/SBR composites. The curing characteristics, mechanical properties, and water absorption of the resulting composites were determined. MSOHO‐treated fibers completed curing at much slower rate and also decreased the cure density of composites, compared to unmodified fibers. In contrast, the combination of VGCNF and unmodified cellulose fibers accelerated the SBR curing process, but reduced the cure density. MSOHO treatment improved the dispersion of the fibers in the SBR, which resulted in improved mechanical properties of composites. The composite incorporating 1 phr VGCNF and 15 phr unmodified cellulose fibers showed the greatest increase in tensile strength as compared with neat SBR. POLYM. COMPOS. 37:1113–1121, 2016. © 2014 Society of Plastics Engineers  相似文献   

20.
采用共混法制备了玉米秸秆/废胶粉复合材料,并以4种不同偶联剂(硅烷偶联剂KH 550、KH 590、Si 69和钛酸酯偶联剂HY 101)分别对复合材料进行界面改性,探讨了玉米秸秆的增强及偶联剂改性对复合材料力学性能、界面形貌和组成结构及热稳定性的影响.结果表明,玉米秸秆的加入可有效提高复合材料的力学性能.偶联剂改性处...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号