首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Waterborne epoxy–clay nanocomposites were prepared by encapsulation of organoclays in epoxy latex particles via phase inversion emulsification. The organoclays were exfoliated in the epoxy backbone before compounding with a hardener and subsequently dispersing in water. The encapsulation of clay platelets into the waterborne epoxy latex particle resulted in an exponential increase in particle size, from 5 to 10 times at a clay loading of only 1–2 wt%, respectively. The XRD patterns and TEM images show that clay platelets were well intercalated and exfoliated in the epoxy matrix. The gas barrier performance of the epoxy–clay nanocomposite strongly depended on the kind of organoclay. The best oxygen barrier efficiency was approximately 14% at 2 wt% clay loading.  相似文献   

2.
Huei-Kuan Fu  Jieh-Ming Huang 《Polymer》2008,49(5):1305-1311
Polystyrene-layered silicate nanocomposites were prepared from three new organically modified clays by emulsion polymerization method. These nanocomposites were exfoliated up to 3 wt% content of pristine clay relative to the amount of polystyrene (PS). The intercalated agents C20, C20-4VB, and C20-POSS intercalated into the galleries result in improved compatibility between hydrophobic polymer and hydrophilic clay and facilitate the well dispersion of exfoliated clay in the polymer matrix. Results from X-ray diffraction, TEM and Fourier transform infrared spectroscopy indicate that these intercalated agents are indeed intercalated into the clay galleries successfully and these clay platelets are exfoliated in resultant nanocomposites. Thermal analyses of polystyrene-layered silicate nanocomposites compared with virgin PS indicate that the onset degradation temperature ca. 25 °C increased and the maximum reduction in coefficient of thermal expansion (CTE) is ca. 40% for the C20-POSS/clay nanocomposite. In addition, the glass transition temperatures of all these nanocomposites are higher than the virgin PS.  相似文献   

3.
The influence of two organically modified montmorillonites on the curing, morphology and mechanical properties of epoxy/poly(vinyl acetate)/organoclay ternary nanocomposites was studied. The organoclays and poly(vinyl acetate) (PVAc) provoked contrary effects on the epoxy curing reaction. Ternary nanocomposites developed different morphologies depending on the PVAc content, that were similar to those observed in the epoxy/PVAc binary blends. The organoclays were only located in the epoxy phase independently of the morphology. All nanocomposites showed intercalated structures with similar clay interlayer distances. Both PVAc and organoclays lowered the Tg of the epoxy phase, the presence of clays did not influence the Tg of the PVAc phase. The addition of the organoclays to the epoxy improved stiffness but lowered ductility while the adition of PVAc improved toughness although reduced stiffness of epoxy thermoset. Ternary nanocomposites exhibited optimal properties that combine the favourable effects of the clay and the thermoplastic. POLYM. COMPOS., 37:2184–2195, 2016. © 2015 Society of Plastics Engineers  相似文献   

4.
Acrylonitrile–butadiene–styrene (ABS)–clay composite and intercalated nanocomposites were prepared by melt processing, using Na‐montmorillonite (MMT), several chemically different organically modified MMT (OMMT) and Na‐laponite clays. The polymer–clay hybrids were characterized by WAXD, TEM, DSC, TGA, tensile, and impact tests. Intercalated nanocomposites are formed with organoclays, a composite is obtained with unmodified MMT, and the nanocomposite based on synthetic laponite is almost exfoliated. An unintercalated nanocomposite is formed by one of the organically modified clays, with similar overall stack dispersion as compared to the intercalated nanocomposites. Tg of ABS is unaffected by incorporation of the silicate filler in its matrix upto 4 wt % loading for different aspect ratios and organic modifications. A significant improvement in the onset of thermal decomposition (40–44°C at 4 wt % organoclay) is seen. The Young's modulus shows improvement, the elongation‐at‐break shows reduction, and the tensile strength shows improvement. Notched and unnotched impact strength of the intercalated MMT nanocomposites is lower as compared to that of ABS matrix. However, laponite and overexchanged organomontmorillonite clay lead to improvement in ductility. For the MMT clays, the Young's modulus (E) correlates with the intercalation change in organoclay interlayer separation (Δd001) as influenced by the chemistry of the modifier. Although ABS‐laponite composites are exfoliated, the intercalated OMMT‐based nanocomposites show greater improvement in modulus. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Mesua ferrea L. seed oil based highly branched polyester and epoxy resins blends were prepared by mechanical mixing at different weight ratios. The best performing blend was used as the matrix for the preparation of nanocomposites with different dose levels of organophilic montmorillonite (OMMT) nanoclay. The prepared nanocomposites were characterized by X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. Data resulting from the mechanical and thermal studies of the blends and nanocomposites indicated improvements in the tensile strength and thermal stability to appreciable extents for the nanocomposites with OMMT loading. The nanocomposites were characterized as well‐dispersed, partially exfoliated structures with good interfacial interactions. From the X‐ray diffraction analysis, the absence of d001 reflections of the OMMT clay in the cured nanocomposites indicated the development of an exfoliated clay structure, which was confirmed by transmission electron microscopy. The homogeneous morphologies of the pure polyester/epoxy blend and clay hybrid systems were ascertained with scanning electron microscopy. The tensile strength of the 5 wt % clay‐filled blend nanocomposite system was increased by 2.4 times compared to that of the pure blend resin system. The results suggest that the prepared nanocomposites have the potential to be used as active thin films for different applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
The epoxy resin/curing agent/montmorillonite nanocomposite was prepared by a casting and curing process. The intercalation and exfoliation behaviors of epoxy resin in the presence of organophilic montmorillonite were investigated by X‐ray diffraction (XRD) and dynamic mechanical thermal analysis (DMTA). For the diethylenetriamine curing agent, the intercalated nanocomposite was obtained; and the exfoliated nanocomposite would be formed for tung oil anhydride curing agent. The curing condition does not affect the resulting kind of composite, both intercalation or exfoliation. For intercalated nanocomposite, the glass transition temperature Tg, measured by DMTA and affected by the curing temperature of matrix epoxy resin is corresponded to that of epoxy resin without a gallery. The α′ peak of the loss tangent will disappear if adding montmorillonite into the composite. It was also found that the Tg of the exfoliated nanocomposite decreases with increasing montmorillonite loading. © 2002 John Wiley & Sons, Inc. J Appl Polym Sci 84: 842–849, 2002; DOI 10.1002/app.10354  相似文献   

7.
Mechanically reinforced and thermally enhanced smectite/epoxy nanocomposites were synthesized using “direct” (without solvent) and “solvent” processing techniques. The molecular dispersion of smectite clay in the epoxy resin was investigated for its role in the rheology, structure formation, and properties of nanocomposites. The effects of three types of organic modifiers on the dispersion structure were compared. The use of solvent during processing assists in the enhancement of clay exfoliation. Rheology was used as a method to compare the degree of clay delamination in the resin matrix, as well as to estimate the suspension structure. The critical volume fraction (Φ*) and maximal packaging of smectites were determined and used for prediction of the viscosity. The qualitative changes in the nanostructure of suspensions above Φ*, due to flocculation of exfoliated clay layers, were compared with the alteration of the properties of nanocomposites, related to the structure formation and morphology. The curing kinetics were found to depend on both the organic modifier and solvent, but the extent of curing was roughly equivalent for the pure epoxy resin and the nanocomposites. The structure of the nanocomposites, either intercalated or exfoliated, produced by the direct processing technique was controlled by the organic modifier. By using solvent processing, the effect of the solvent dominates that of the organic modifier, presumably leading to exfoliated nanocomposites. The mechanical and thermal properties are strongly enhanced above the Φ* of smectites, and they are significantly dependent on the type of nanocomposite structure and the use of solvent. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2499–2510, 2005  相似文献   

8.
The intercrosslinked networks of unsaturated polyester (UP) toughened epoxy–clay hybrid nanocomposites have been developed. Epoxy resin (DGEBA) was toughened with 5, 10 and 15% (by wt) of unsaturated polyester using benzoyl peroxide as radical initiator and 4,4′-diaminodiphenylmethane as a curing agent at appropriate conditions. The chemical reaction of unsaturated polyester with the epoxy resin was carried out thermally in presence of benzoyl peroxide-radical initiator and the resulting product was analyzed by FT-IR spectra. Epoxy and unsaturated polyester toughened epoxy systems were further modified with 1, 3 and 5% (by wt) of organophilic montmorillonite (MMT) clay. Clay filled hybrid UP-epoxy matrices, developed in the form of castings were characterized for their thermal and mechanical properties. Thermal behaviour of the matrices was characterized by differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Mechanical properties were studied as per ASTM standards. Data resulted from mechanical and thermal studies indicated that the introduction of unsaturated polyester into epoxy resin improved the thermal stability and impact strength to an appreciable extent. The impact strength of 3% clay filled epoxy system was increased by 19.2% compared to that of unmodified epoxy resin system. However, the introduction of both UP and organophilic MMT clay into epoxy resin enhanced the values of mechanical properties and thermal stability according to their percentage content. The impact strength of 3% clay filled 10% UP toughened epoxy system was increased by 26.3% compared to that of unmodified epoxy system. The intercalated nanocomposites exhibited higher dynamic modulus (from 3,072 to 3,820 MPa) than unmodified epoxy resin. From the X-ray diffraction (XRD) analysis, it was observed that the presence of d 001 reflections of the organophilic MMT clay in the cured product indicated the development of intercalated clay structure which in turn confirmed the formation of intercalated nanocomposites. The homogeneous morphologies of the UP toughened epoxy and UP toughened epoxy–clay hybrid systems were ascertained from scanning electron microscope (SEM).  相似文献   

9.
P.J. YoonD.L. Hunter  D.R. Paul 《Polymer》2003,44(18):5323-5339
Polycarbonate nanocomposites were prepared by melt processing from a series of organoclays based on sodium montmorillonite exchanged with various amine surfactants. To explore the effects of matrix molecular weight on dispersion, an organoclay was melt-mixed with a medium molecular weight polycarbonate (MMW-PC) and a high molecular weight polycarbonate (HMW-PC) using a twin screw extruder. The effects of surfactant chemical structure on the morphology and physical properties were explored for nanocomposites formed from HMW-PC. Wide angle X-ray scattering, transmission electron microscopy, and stress-strain behavior were employed to investigate the nanocomposite morphology and physical properties. The modulus enhancement is greater for nanocomposites formed from HMW-PC than MMW-PC. This trend is attributed to the higher shear stress generated during melt processing. A surfactant having both polyoxyethylene and octadecyl tails shows the most significant improvement in modulus with some of the clay platelets fully exfoliated. However, the nanocomposites formed from a range of other organoclays contained both intercalated tactoids and collapsed clay particles with few, if any, exfoliated platelets.  相似文献   

10.
Clay‐containing nanocomposites of polystyrene‐b‐poly(ethylene‐co‐butylene)‐b‐polystyrene (SEBS) copolymers having cylindrical domains were obtained by melt extrusion using a tape die. One type of sample (SEBS‐MA) had maleic anhydride attached to the middle block. Two types of organoclays were added, namely Cloisite 20A and Cloisite 30B. Small angle X‐ray scattering and transmission electron microscopy (TEM) analyses showed that the addition of 20A clay to SEBS and SEBS‐MA resulted in nanocomposites with intercalated and partially exfoliated structures, respectively. The addition of 30B clay to SEBS and SEBS‐MA promoted the formation of composites containing relatively large micron‐sized and partially exfoliated clay particles, respectively. Our TEM analysis revealed that clay particles embedded in SEBS are preferably in contact with the polystyrene cylindrical domains, while in SEBS‐MA they are in contact with the maleated matrix. The extrusion processing promoted alignment of the axes of the polystyrene cylinders along the extrusion direction in all samples, and the basal planes of the clay particles were mostly parallel to the main external surfaces of the extruded tapes. © 2013 Society of Chemical Industry  相似文献   

11.
High chemical resistance is the main prerequisites for materials that are intended to be utilized in usages such as chemicals storage containers production. Nanocomposites of epoxy resin containing nanoclay, CaCO3 and TiO2 nanoparticles were prepared and their chemical resistance was studied. Moreover, the effect of electron beam irradiation was explored. TEM micrographs proved the dispersion of nano-size particles in the polymeric matrix. XRD patterns showed an exfoliated structure for nanocomposite containing 1 % nanoclay and intercalated structures for nanocomposites with higher nanoclay contents. SEM showed the pits that appeared in epoxy/nanoclay structure due to chemical corrosion. Weight loss measurements revealed that an addition of 1 % nanoclay to the epoxy matrix is effective for improving the chemical properties of the polymer. Desirable effect of 100 kGy irradiation on chemical resistance properties of the samples was also observed in both acidic and basic environments.  相似文献   

12.
Polymeric nanocomposites were synthesized from functionalized soybean‐oil‐based polymer matrix and montmorillonite (MMT) clay using an in situ free radical polymerization reaction. Acrylated epoxidized soybean oil combined with styrene was used as the monomer. Organophilic MMT (OrgMMT) was obtained using a quaternized derivative of methyl oleate, which was synthesized from olive oil triglyceride, as a renewable intercalant. The resultant nanocomposites were characterized using X‐ray diffraction and atomic force microscopy. The effect of increased nanofiller loading on the thermal and mechanical properties of the nanocomposites was investigated using thermogravimetric analysis and dynamic mechanical analysis. It was found that the desired exfoliated nanocomposite structure was achieved when the OrgMMT loading was 1 and 2 wt%, whereas a partially exfoliated or intercalated nanocomposite was obtained for 3 wt% loading. All the nanocomposites were found to have improved thermal and mechanical properties as compared with virgin acrylated epoxidized soybean‐oil‐based polymer matrix. The nanocomposite containing 2 wt% OrgMMT clay was found to have the highest thermal stability and best dynamic mechanical performance. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
An experimental polypropylene (PP) nanocomposite, containing approximately 4 wt % of an organophilic montmorillonite clay, was prepared and characterized, and its properties were compared with those of talc‐filled (20–40 wt %) compositions. Weight reduction, with maintained or even improved flexural and tensile moduli, especially at temperatures up to 70°C, was a major driving force behind this work. By a comparison with the analytical data from a nylon 6 (PA‐6) nanocomposite, it was found that the PP nanocomposite contained well‐dispersed, intercalated clay particles; however, X‐ray diffraction, transmission electron microscopy, dynamic mechanical analysis, and permeability measurements confirmed that exfoliation of the clay in PP was largely absent. The increased glass‐transition temperature (Tg) of a PA‐6 nanocomposite, which possessed fully exfoliated particles, indicated the molecular character of the matrix–particle interaction, whereas the PP nanocomposite exhibited simple matrix–filler interactions with no increase in Tg. The PP nanocomposite exhibited a weight reduction of approximately 12% in comparison with the 20% talc‐filled PP, while maintaining comparable stiffness. Undoubtedly, considerable advantages may be available if a fully exfoliated PP nanocomposite is fabricated; however, with the materials available, a combination of talc, or alternative reinforcements, and nanocomposite filler particles may provide optimum performance. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1639–1647, 2003  相似文献   

14.
Highly exfoliated and intercalated silicone rubber (SR) nanocomposites based on natural montmorillonite (Cloisite Na+) and organically modified montmorillonite (Cloisite 30B and Cloisite 20A) were successfully prepared by melt‐mixing technique. Dispersion of the nanoclays in the rubber nanocomposites was subsequently investigated. As indicated by the X‐ray diffraction (XRD) analysis, intercalation, and exfoliation of the clay particles in the nanocomposites was achieved at less than 8 parts per hundred (phr) rubber by weight, irrespective of the initial interlayer spacing of the nanoclay particles. Both Cloisite Na+ and Cloisite 30B were spontaneously transformed into exfoliated microstructures during the vulcanisation stage. Overall, the use of the nanoclays in silicone rubber improved the Young's modulus, tensile strength, and elongation at break by more than 50% as compared with the control rubber. In addition, this work provided a fresh insight into the way intercalated and exfoliated morphologies affect mechanical properties of silicone rubber nanocomposites. It was shown that the exfoliated Cloisite Na+ yielded outstanding mechanical properties with low hysteresis at the same loading of the exfoliated Cloisite 30B and intercalated Cloisite 20A organoclays. As expected, the formation of crosslinks affected the mechanical properties of the rubber vulcanizate significantly. POLYM. ENG. SCI., 53:2603–2614, 2013. © 2013 Society of Plastics Engineers  相似文献   

15.
The orientation distribution of layer-shaped nanoclays (e.g. organoclays and pristine clays) dispersed in a polymer matrix is an important parameter to control the properties of polymer nanocomposites. In this study, we demonstrate that the use of multi-directional 2-D small-angle X-ray scattering (SAXS) can quantitatively describe the orientation distribution of organoclays (e.g. Cloisite C20A) in melt-pressed nanocomposite films, containing ethylene-vinyl acetate (EVA) copolymers as polymer matrices. Different weight fractions of organoclays were used to alter the orientation profile of nanocomposite films, in which the dispersion and morphology of organoclays were also characterized by complementary 2-D and 3-D transmission electron microscopy (TEM). All nanocomposites exhibited mixed intercalation/exfoliation clay morphology, where the intercalated structure possessed partial orientation parallel to the in-plane direction of the film. The higher content of the clay loading showed a higher clay orientation. A simple analytical scheme for SAXS data analysis to determine the orientation parameter (P2) was demonstrated, the results of which are in agreement with the gas permeation properties of the nanocomposite films.  相似文献   

16.
A series of the exfoliated or intercalated PU/organoclay nanocomposite thin films were prepared by in situ polymerization of polyol/organoclay mixture, chain extender and diisocyanate. The surface mechanical properties of the PU/organoclay nanocomposite films were investigated by means of nanoindentation. The results show that the hardness, elastic modulus and scratch resistant of the nanocomposites dramatically improved with the incorporation of organoclay. This improvement was dependent on the clay content as well as the formation structure of clay in the PU matrix. At 3% clay content, the hardness and elastic modulus of intercalated nanocomposites increased by approximately 16% and 44%, respectively, compare to pure PU. For exfoliated nanocomposite, the improvements in these properties were about 3.5 and 1.6 times higher than the intercalated ones. The exfoliated PU nanocomposites also had greater hardness and showed better scratch resistance compared to the intercalated ones.  相似文献   

17.
A novel organic rectorite (OREC) was prepared by treating the natural sodium‐rectorite (Na‐REC) with ionic liquid 1‐hexadecyl‐3‐methylimidazolium bromide ([C16mim]Br). X‐ray diffraction (XRD) analysis showed that the interlayer spacing of the OREC was expanded from 2.23nm to 3.14nm. Furthermore, two types of OREC/epoxy nanocomposites were prepared by using epoxy resin (EP) as matrix, 2‐ethyl‐4‐methylimidazole (2‐E‐4‐MI) and tung oil anhydride (TOA) as curing agents, respectively. XRD and transmission electron microscope (TEM) analysis showed that the intercalated nanocomposite was obtained with addition of the curing agent 2‐E‐4‐MI, and the exfoliated nanocomposite was obtained with addition of the curing agent TOA when the OREC content was less than 2 wt %. For the exfoliated nanocomposite, the mechanical and thermal property tests indicated that it had the highest improvement when OREC content was 2 wt% in EP. Compared to pure EP, 60.3% improvement in tensile strength, 26.7% improvement in bending strength, 34% improvement in bending modulus, 14°C improvement in thermal decomposition temperature (Td) and 5.7°C improvement in glass transition temperature (Tg) were achieved. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Epoxy‐clay nanocomposites based on diglycidyl ether of bisphenol A (DGEBA) epoxy reinforced with 2 wt% of four different types of clay were prepared by high shear mixing (HSM) technique. The resultant nanocomposites were investigated to determine the effects of clay addition and clay types on their mechanical, thermal, and physical properties. The XRD and TEM analyses revealed that good dispersions of nanoclay within the epoxy matrix have been achieved especially for the samples prepared with I.30E clay where a combination of disordered intercalated and exfoliated morphology was observed. The structure of samples synthesized with other types of clay was dominated by intercalated morphologies. The tensile results illustrated that the nanocomposite containing I.30E clay has the best mechanical properties as compared to other nanocomposites. This is mainly due to better dispersion of I.30E nanoclay in the epoxy matrix for this nanocomposite. The increase or decrease in the glass transition temperatures of nanocomposites were found to be dependent on the type of clay used. The effect of clay addition on the barrier properties was examined using water exposure test which demonstrated that the addition of 2% of I.30E and C10A clays resulted in 60% reduction in diffusivity. Noticeable reduction in maximum water uptake was also observed for all nanocomposites. The improvement in these physical properties was attributed to the tortuosity effect, where water molecules have to move around clay layers during diffusion in nanocomposites. POLYM. COMPOS., 36:1998–2007, 2015. © 2014 Society of Plastics Engineer  相似文献   

19.
Layered double hydroxides (LDHs)/epoxy nanocomposites were prepared by mixing the amino laurate intercalated LDHs, EPON 828 resin, and Jeffamine D400 as a curing agent. The organo-modified LDHs with hydrophobic property easily disperse in epoxy resin, and the amino laurate intercalated LDHs with large gallery space allow the epoxy molecules and the curing agents to easily diffuse into the LDHs galleries at elevated temperature. After the thermal curing process, the exfoliated LDHs/epoxy nanocomposites were formed. X-ray diffraction was used to detect the formation process of the exfoliated LDHs/epoxy nanocomposites. TEM was used to observe the dispersed behavior of the LDHs nanolayers, and the LDHs nanolayers were exfoliated and well dispersed in these nanocomposites. Owing to the reaction between the amine groups of the intercalated amino laurate and epoxy groups, the adhesion between the LDHs nanolayers and epoxy molecules makes these LDHs/epoxy nanocomposites more compatible. Consequently, the tensile properties from tensile test and the mechanical properties from DMA were enhanced, and the Tg of these nanocomposites from DMA and TMA were increased. Coefficients of thermal expansion (CTEs, below and above Tg) of these nanocomposites from TMA decreased with the LDHs content. The thermal stability of these nanocomposites was enhanced by the well dispersed LDHs nanolayers.  相似文献   

20.
Multifunctional high performance functionalized graphene sheets (FGSs) based epoxy nanocomposites were investigated to understand the feasibility that these FGSs‐epoxy nanocomposites can be applied to cryotank composite applications. The FGSs were successfully synthesized from graphite flakes through preparing graphite oxides by oxidizing graphite flakes first and next, thermally exfoliating the formed graphite oxides. These high performance FGSs were next incorporated into epoxy matrix resin system to generate the uniformly dispersed FGSs reinforced epoxy nanocomposites. The resultant FGSs‐epoxy nanocomposites significantly enhanced resin strength and toughness about 30–80% and 200–700% at room and low temperatures of −130°C, respectively, and reduced the coefficient of thermal expansion (CTE) of polymer resin at both below and above Tg about 25% at loading of 1.6 wt% FGSs, and increased Tg of polymer resin about 8°C at low loading of 0.4 wt% FGSs without deteriorating their good processability. We found that these significantly improved properties of FGSs‐reinforced epoxy nanocomposite were closely associated with high surface area and wrinkled structure of the FGSs. The further optimization will result the high performance FGSs‐epoxy nanocomposite suitable for use in the next generation multifunctional cryotank carbon fiber reinforced polymer (CFRP) composite applications, where better microcrack resistance and mechanical and dimensional stability are needed. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号