首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different poly(methyl methacrylate/n‐butyl acrylate)/poly(n‐butyl acrylate/methyl methacrylate) [P(BA/MMA)/P(MMA/BA)] and poly(n‐butyl acrylate/methyl methacrylate)/polystyrene [P(BA/MMA)/PSt] core‐shell structured latexes were prepared by emulsifier‐free emulsion polymerization in the presence of hydrophilic monomer 3‐allyloxy‐2‐hydroxyl‐propanesulfonic salt (AHPS). The particle morphologies of the final latexes and dynamic mechanical properties of the copolymers from final latexes were investigated in detail. With the addition of AHPS, a latex of stable and high‐solid content (60 wt %) was prepared. The diameters of the latex particles are ~0.26 μm for the P(BA/MMA)/P(MMA/BA) system and 0.22–0.24 μm for the P(BA/MMA)/PSt system. All copolymers from the final latexes are two‐phase structure polymers, shown as two glass transition temperatures (Tgs) on dynamic mechanical analysis spectra. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3078–3084, 2002  相似文献   

2.
Starch is sensitive to moisture and is weak to durability in the protection application to ancient relics. Therefore, two fluorosilicone‐modified starches are firstly prepared and evaluated for the protection of historic stones. The fluoro‐silicone copolymer grafted starch of P(VTMS/12FMA)‐g‐starch is synthesized by grafting copolymer of vinyltrimethoxysilane (VTMS) and dodecafluoroheptyl methacrylate (12FMA) onto starch. While the fluoro‐silicone starch latex of VTMS‐starch@P(MMA/BA/3FMA) is obtained by emulsion polymerization of VTMS primarily grafted‐starch (VTMS‐starch) with methyl methacrylate (MMA), butyl acrylate (BA) and 2,2,2‐trifluoroethyl methacrylate (3FMA). The grafting fluorosilicone copolymer onto starch improves obviously their hydrophobic and thermal properties. Comparatively, VTMS‐starch@P(MMA/BA/3FMA) film performs higher water contact angle (107°) and thermal stability (350–430°C) than p(VTMS/12FMA)‐g‐starch film (72°, 250–420°C) due to the migration of fluorine‐containing group onto the surface of film during the film formation. Therefore, VTMS‐starch@P(MMA/BA/3FMA) shows much better protective performance in water‐resistance, and salt/freeze‐thaw resistance for stone samples. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41650.  相似文献   

3.
Conductive polymer particles, polyaniline (PANI)‐coated poly(methyl methacrylate–butyl acrylate–acrylic acid) [P(MMA–BA–AA)] nanoparticles, were prepared. The P(MMA–BA–AA)/PANI core–shell complex particles were synthesized with a two‐step miniemulsion polymerization method with P(MMA–BA–AA) as the core and PANI as the shell. The first step was to prepare the P(MMA–BA–AA) latex particles as the core via miniemulsion polymerization and then to prepare the P(MMA–BA–AA)/PANI core–shell particles. The aniline monomer was added to the mixture of water and core nanoparticles. The aniline monomer could be attracted near the outer surface of the core particles. The polymerization of aniline was started under the action of ammonium persulfate (APS). The final product was the desired core–shell nanoparticles. The morphology of the P(MMA–BA–AA) and P(MMA–BA–AA)/PANI particles was characterized with transmission electron microscopy. The core–shell structure of the P(MMA–BA–AA)/PANI composites was further determined by Fourier transform spectroscopy and ultraviolet–visible measurements. The conductive flakes made from the core–shell latexes were prepared, and the electrical conductivities of the flakes were studied. The highest conductivity of the P(MMA–BA–AA)/PANI pellets was 2.05 S/cm. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Poly(butyl acrylate–methyl methacrylate) [P(BA–MMA]/polyaniline (PANI) core–shell complex particles were synthesized with a two‐step emulsion polymerization method with P(BA–MMA) as the core and PANI as the shell. The first step was to prepare P(BA–MMA) latex particles as the core via soapless emulsion polymerization. The second step was to prepare P(BA–MMA)/PANI core–shell particles. Sodium dodecyl sulfate was fed into the P(BA–MMA) emulsion as a surfactant, and this was followed by the addition of the aniline monomer. A bilayer structure of the surfactant over the surfaces of the core particles was desired so that the aniline monomer could be attracted near the outer surface of the core particles. In some cases, dodecyl benzene sulfonic acid was added after 2 h when the polymerization of aniline was started. The final product was the desired core–shell particles. The morphology of P(BA–MMA) and P(BA–MMA)/PANI particles was observed with transmission electron microscopy. The thermal properties were studied with thermogravimetric analysis and differential scanning calorimetry. Furthermore, conductive films made from the core–shell latexes were prepared, and the electrical conductivities of the films were studied. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 823–830, 2007  相似文献   

5.
In order to improve the photostability of polyoxymethylene (POM), a core‐shell acrylate elastomer with UV stabilization, i.e. poly[(methyl methacrylate)‐(butyl acrylate)‐2‐hydroxy‐4‐(3‐methacryloxy‐2‐hydroxypropoxy)benzophenone] (core‐shell poly(MMA‐BA‐BPMA)), was added into the POM matrix using a melt‐mixing method. The effect of the modification with core‐shell poly(MMA‐BA‐BPMA) on POM was compared with that of poly(MMA‐ co ‐BA‐ co ‐BPMA) copolymer. Scanning electron microscopy, metallographic microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, X‐ray diffraction and X‐ray photoelectron spectroscopy were employed to characterize POM blends before and after UV irradiation, and the mechanical properties of the POM blends were investigated. The results showed that core‐shell poly(MMA‐BA‐BPMA) improved well the compatibility with and toughness of the POM matrix, and its light‐stable functional groups could increase the UV resistance of POM blends. During UV aging, the impact strength and elongation at break of POM/core‐shell poly(MMA‐BA‐BPMA) blends were retained, the growth rate of surface cracks of POM was inhibited effectively by core‐shell poly(MMA‐BA‐BPMA) and the degree of photo‐oxidation of POM blend surfaces was improved to a certain extent. Compared with poly(MMA‐ co ‐BA‐ co ‐BPMA), core‐shell poly(MMA‐BA‐BPMA) had a better UV stabilization effect on the POM matrix. Our results indicate that the core‐shell acrylate elastomer with toughening and UV stabilization functions can significantly improve the long‐term UV stability of POM. Copyright © 2012 Society of Chemical Industry  相似文献   

6.
BA‐MMA‐POMA copolymer latex was successfully prepared by soap‐free emulsion polymerization of 2‐(perfluoro‐(1,1‐bisisopropyl)‐2‐propenyl)oxyethyl methacrylate(POMA) with butyl acrylate(BA), methyl methacrylate (MMA) initiated by K2S2O8 in the water. POMA was synthesized from the intermediate perfluoro nonene and 2‐hydroxyethyl methacrylate as the staring reactants. The structure of BA‐MMA‐POMA copolymer latex was investigated by Fourier transform infrared (FTIR). The characteristics of the film such as hydrophobicity and glass transition temperature were characterized with the contact angle and differential scanning calorimetry respectively. The influences of the amount of the fluorinated monomer and the initiator on the soap‐free emulsion polymerization and performance of the latex were studied. In addition, comparison with the latex prepared by the conventional emulsifier SDBS is investigated. Results show that the hydrophobicity and glass transition temperature (Tg) of the latex are increased when the fluorinated monomer is introduced to copolymerize with other monomers. The hydrophobicity can be improved further with heating. Compared with the latices prepared by using SDBS emulsifier, the latices prepared by using HMPS emulsifier have larger particle size, higher surface tension. However, the difference of their Tg is extremely minute. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
A new macromolecular coupling agent butyl acrylate (BA)‐methyl methacrylate (MMA)‐vinyl triethoxy silane (VTES) tercopolymer was synthesized using solution polymerization initiated by free radical initiator benzoyl peroxide (BPO) and dicumyl peroxide (DCP). Dodecylthiol is choosed as the chain transfer to control the molecule weight of this tercopolymer. The terpolymer's molecular structure was confirmed by FTIR and NMR, and its average molecular weight was determined by GPC. In this work, the tercopolymer BA–MMA–VTES is used for surface modification of silicon nitride (Si3N4) nanopowder. The structure surface properties and thermal stability of modified nano‐Si3N4 were systematically investigated by FTIR, TGA, TEM, and size distribution analyzer. The results show that the macromolecular coupling agent bonds covalently on the surface of nano‐sized Si3N4 particles and an organic coating layer is formed. The optimum loading of this macromolecular coupling agent BA–MMA–VTES tercopolymer is 5% (wt %) of nano‐sized Si3N4. TEM also reveals that modified nano‐Si3N4 possesses good dispersibility. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
The butyl acrylate (BA)/methyl methacrylate (MMA), and glycidyl methacrylate (GMA) composite copolymer latex was synthesized by seeded emulsion polymerization technique taking poly(methyl methacrylate) (PMMA) latex as the seed. Four series of experiments were carried out by varying the ratio of BA : MMA (w/w) (i.e. 3.1 : 1, 2.3 : 1, 1.8 : 1, and 1.5 : 1) and in each series GMA content was varied from 1 to 5% (w/w). The structural properties of the copolymer were analyzed by FTIR, 1H‐, and 13C‐NMR. Morphological characterization was carried out using transmission electron microscopy (TEM). In all the experiments, monomer conversion was ~99% and final copolymer composition was similar to that of feed composition. The incorporation of GMA into the copolymer chain was confirmed by 13C‐NMR. The glass transition temperature (Tg) of the copolymer latex obtained from the differential scanning calorimetry (DSC) curve was comparable to the values calculated theoretically. With increase in GMA content, particles having core‐shell morphology were obtained, and there was a decrease in the particle size as we go from 2–5% (w/w) of GMA. The adhesive strength of the latexes was found to be dependent on the monomer composition. With increase in BA : MMA ratio, the tackiness of the film increased while with its decrease the hardness of the film increased. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
马英子  肖新颜 《化工学报》2011,62(4):1143-1149
采用原位乳液聚合法,在可聚合阴离子乳化剂/非离子乳化剂复配体系下,以γ-甲基丙烯酰氧丙基三甲氧基硅烷(KH-570)改性的纳米SiO2、甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)、丙烯酸(AA)等为核相组成,以MMA、BA及甲基丙烯酸十二氟庚酯(DFMA)为壳相单体,合成纳米SiO2/含氟聚丙烯酸酯复合乳液.考察了纳...  相似文献   

10.
In this work the well-defined fluorinated acrylic copolymer latex and solution were prepared by the radical initiated seed emulsion polymerization and solution polymerization, respectively, using the same monomers of dodecafluoroheptyl methacrylate (DFHM), butyl acrylate (BA) and methyl methylacrylate (MMA). The copolymer latex BA/MMA/DFHM was designed as core–shell structure and the copolymer solution poly(BA–MMA–DFHM) was structured with low molecular weight. The chemical and morphology structures as well as the film properties obtained from latex and solution were analyzed and compared by spectroscopic techniques (FT-IR and NMR), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), gel permeation chromatography (GPC), scanning electron microscopy coupled with energy-dispersive X-ray detector (SEM–EDX) and static contact angles (CAs) instrument. Moreover, the BA/MMA/DFHM latex and poly(BA–MMA–DFHM) solution (with 29 wt% of DFHM) were applied onto two kinds of sandstone samples by capillary absorption, and their preliminary protecting efficiency was evaluated. It is demonstrated that the comprehensive performances of BA/MMA/DFHM latex films were quite comparable to those of poly(BA–MMA–DFHM) solution cast films, the latter exhibited a better protective performance.  相似文献   

11.
Polysilsesquioxanes (PSQ)-based core–shell fluorinated polyacrylate/silica hybrid latex coatings were synthesized with PSQ latex particles as the seeds, and methyl methacrylate, butyl acrylate, 3-(trimethoxysilyl) propyl methacrylate (MPS)-modified SiO2 nanoparticles (NPs), 1H,1H,2H,2H-perfluorooctyl methacrylate (PFOMA) as the shell monomers by emulsifier-free miniemulsion polymerization. The results of Fourier transform IR spectroscopy, transmission electron microscopy, and dynamic light scattering suggested the obtained hybrid particles emerged with trilayer core–shell pattern. Contact angle analysis, x-ray photoelectron spectroscopy, and atom force microscopy results indicated that the hybrid film containing SiO2 NPs showed higher hydrophobicity, lower surface free energy and water absorption, in comparison with the control system (without SiO2 NPs). Compared with the control system, the hybrid latex film containing SiO2 NPs in the fluorinated polyacrylate shell layer showed the higher content of fluorine atoms and a rougher morphology on the film surface. Additionally, thermogravimetric analysis demonstrated the enhanced thermostability of PSQ-based nanosilica composite fluorinated polyacrylate latex film.  相似文献   

12.
Polysilsesquioxane–fluoroacrylate copolymer [poly(methyl methacrylate)–butyl acrylate–dodecafluoroheptyl methacrylate)] (FPSQ) composite latex particles with a trilayer core–shell morphology were manufactured by seeded emulsion polymerization, where PSQ latex particles bearing reactive methacryloxypropyl moieties were first produced by the hydrolysis‐condensation of (3‐methacryloxypropyl)trimethoxysilane, and then they were utilized as seeds, with methyl methacrylate, butyl acrylate, and dodecafluoroheptyl methacrylate as the inner and outer shell monomers. Fourier‐transform infrared spectra and 1H‐NMR confirm the structure of the FPSQs. Transmission electron microscopy and scanning electron microscopy demonstrate that the obtained composite emulsion particles emerge with the trilayer core–shell pattern. Due to the anchoring of PSQ nanoparticles, the thermal stabilities of the FPSQ films are strengthened, and the resistance to heat is gradually improved along with the increase of the fluoroacrylate dose in the polymer matrix composite. X‐ray photoelectron spectroscopy, atomic force microscopy (AFM), and hydrophobicity investigations indicate that the fluorinated chain segments tend to concentrate at the film–air two‐phase interface. In addition, the AFM result denotes that importing more fluorine into the FPSQ hybrid material will engender greater phase separation and enrichment of the fluoroalkyl segments and a rougher morphology. Thus, the water contact angle of the FPSQ film can ultimately reach 121.4°. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44845.  相似文献   

13.
采用半连续乳液聚合法合成了以甲基丙烯酸甲酯(MMA)和丙烯酸丁酯(BA)为成核单体,甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)和丙烯酸六氟丁酯(HF)为成壳单体的核壳型微乳液。通过TEM、SEM、FT-IR对乳液及乳液固化膜性能进行了表征;对乳液的稳定性做了测试,用接触角法对乳液固化膜表面性能进行了研究。结果表明:当含氟单体质量分数为19.34%时,核壳型结构粒子呈球形分布,乳液稳定性良好,成膜性较好,乳液固化膜的表面能为24.26 mJ/m2,与之相对应的无氟乳液固化膜的表面能为52.73 mJ/m2。根据本研究得出的原料、配方及工艺方法制备的乳液及其膜有较优的性能。  相似文献   

14.
Structured latex particles with a slightly crosslinked poly(styrene‐n‐butyl acrylate) (PSB) core and a poly(styrene–methacrylate–vinyl triethoxide silane) (PSMV) shell were prepared by seed emulsion polymerization, and the latex particle structures were investigated with Fourier transform infrared, thermogravimetric analysis, differential scanning calorimetry, transmission electron microscopy, and dynamic light scattering. The films that were formed from the structured core (PSB)–shell (PSMV) particles under ambient conditions had good water repellency and good tensile strength in comparison with films from structured core (PSB)–shell [poly(styrene–methyl methyacrylate)] latex particles; this was attributed to the self‐crosslinking of CH2?CH? Si(OCH2CH3)3 in the outer shell structure. The relationship between the particle structure and the film properties was also investigated in this work. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1824–1830, 2006  相似文献   

15.
In this study, the copolymers with different ratios of AA(acrylic acid)–MMA(methyl methacrylate)–BA (butyl acrylate) are synthesized to prepare pervaporation membrane for the separation of methanol/MTBE (methyl tert‐butyl ether)/C5 mixtures. Swelling experiment of these copolymers in pure methanol, MTBE, C5, and methanol/MTBE mixtures are carried out, respectively. The results show that there is a strong interaction between MTBE and copolymer with high content of BA. The pervaporation characteristics of the membranes prepared with different copolymer are measured in the separation of methanol/MTBE mixture. The experimental results show that the pervaporation ability changes with swelling degree in the same direction. The copolymers are characterized by FTIR. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2267–2271, 2003  相似文献   

16.
A core–shell polyacrylate elastomer containing ultraviolet (UV) stabilizer was synthesized via semicontinuous seeded emulsion polymerization from butyl acrylate (BA), methyl methacrylate (MMA), and a polymerizable UV stabilizer 2‐hydroxy‐4‐(3‐methacryloxy‐2‐hydroxylproroxy)benzophenone (BPMA). The core–shell poly(MMA‐BA‐BPMA) was investigated by Fourier transform infrared spectroscopy, gel permeation chromatography UV–visible (UV–vis) absorption spectroscopy, and transmission electron microscope. Furthermore, the obtained core–shell poly(MMA‐BA‐BPMA) elastomer was used as a modifier to enhance the UV resistance and impact resistance of polyoxymethylene (POM). As studied by scanning electron microscope, the core–shell poly(BA‐MMA‐BPMA) elastomer could be well dispersed in POM matrix, indicating that the elastomer had good compatibility with POM. In addition, the POM/poly(MMA‐BA‐BPMA) blend was examined by differential scanning calorimetry before and after UV irradiation. The results showed that the melting point decreased as the irradiation time increased; however, the crystallinity culminated at 500‐h UV irradiation slightly decreased and at last leveled off. The mechanical properties of POM/poly(BA‐MMA‐BPMA) before and after UV irradiation were also studied. It revealed that the photostabilizing fragments in the elastomer could provide long‐term UV resistance to POM. Besides, the impact strength was also improved when compared with pure POM. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

17.
以苯乙烯(St)和丙烯酸丁酯(BA)为主要核单体,甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)为主要壳单体,甲基丙烯酸(MAA)和甲基丙烯酸羟丙酯(HPMA)为功能性单体,采用梯度乳液聚合法制备了硬核软壳型苯丙乳液。考察了聚合工艺,乳化剂的配比及含量,引发剂浓度,反应温度以及功能性单体含量对乳液聚合过程及性能的影响。结果表明:乳化剂占单体总量的1%,DSB/OP-10的质量比为2∶1,引发剂占单体总量的0.5%,反应温度为80℃,功能性单体含量为4%时,聚合稳定,凝胶量少,乳液性能优异,且采用梯度乳液聚合方式可有效降低乳液的最低成膜温度。通过红外光谱测定了苯丙共聚物的结构组成,透射电镜(TEM)对粒子结构进行分析,验证了其梯度结构形态。  相似文献   

18.
Core–shell nanoparticles chemically functionalized by hindered amine stabilizer (HAS), poly(BA‐MMA‐co‐PMPA) (PBMP), were prepared by two‐stage emulsion polymerization from butyl acrylate, methyl methacrylate, and 1,2,2,6,6‐pentamethylpiperidin‐4‐yl acrylate. The incorporation of HAS into the particles was confirmed by nuclear magnetic resonance (1H‐NMR) and the core–shell microstructure of PBMP particles was revealed by transmission electron microscopy. Furthermore, PBMP capable of one‐step toughening and photostabilizing, was melt‐blended with polyoxymethylene (POM), and its dispersion in POM was investigated by scanning electron microscope. The results showed that the core–shell nanoparticles could be well dispersed in POM matrix, indicating its good compatibility with POM. The UV resistance and impact resistance of POM were obviously improved by the HAS‐functional core–shell nanoparticles simultaneously. In addition, the core–shell nanoparticles could confer excellent protection to the surface of POM from UV‐light damage, regardless of the adverse effects on the thermal‐oxidative stability of POM, as investigated by thermogravimetry analysis under aerobic condition. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
In this work, copolymers and a multilayer core/shell P(BA/BA-MMA/MMA) composite latex of methyl methacrylate (MMA), butyl acrylate (BA), and ethyl acrylate (EA) were prepared by emulsion polymerization. The thermal and the mechanical properties of their films were characterized by differential scanning calorimeter (DSC) and dynamic mechanical analysis (DMA), while the acoustic absorption performance of dried films were estimated using the standing wave pipe method. The results show that a multilayer core/shell polymer of P(BA/BA-MMA/MMA) has many glass transitions in a broad temperature region, and in the frequency range of sound, this core/shell polymer has better acoustic absorption properties than the random copolymer of P(BA-MMA). © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Silicone‐modified styrene–butyl acrylate copolymer latex was synthesized by emulsion copolymerization by using octamethylcyclotetrasiloxane (D4), styrene, and butyl acrylate as raw materials, potassium persulfate as initiator and propylmethacrylate triethoxysilane (KH‐570) as crosslinking agent. The infrared spectra studies showed that the vinyl monomers were completely copolymerized with D4. The prepared silicone‐modified copolymer latex with the interpenetrating polymer networks tended to have higher stability, and better toluene and water resistance than styrene–butyl acrylate latex. The glossiness of coated paper was improved with silicone‐modified copolymer latex, and it was at a maximum when D4 was about 3% of total monomers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 333–336, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号