首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Multiwalled carbon nanotubes (MWCNTs) were functionalized with α,ω‐diamino poly(propylene oxide) (Jeffamine) of different molecular weights and crosslinked with poly(acrylonitrile‐co‐glycidyl methacrylate) [P(AN‐GMA)] to prepare a novel nanocomposite for applications in gel polymer electrolytes (GPEs). The synthesized copolymer was characterized by 1H‐NMR, Fourier transform infrared, and thermal analysis. Scanning electron microscope observation revealed that the Jeffamine‐functionalized MWCNTs distributed uniformly in the nanocomposite membrane. The mechanical behaviors of the nanocomposite membranes were investigated. It was found that the crosslinked nanocomposite membranes of P(AN‐GMA) and Jeffamine‐functionalized MWCNTs exhibited much higher mechanical strength than the counterpart nanocomposite obtained by physical blending. Moreover, the weight content and molecular weights of Jeffamine had an effect on the mechanical properties of the nanocomposites. Differential scanning calorimeter measurements showed that the crosslinked nanocomposite membranes were amorphous. GPEs based on the nanocomposite were prepared and characterized by complex impedance measurements. The GPE based on the nanocomposite of P(AN‐GMA) crosslinked with 6 wt % of MWCNTs functionalized by Jeffamine D400 showed an ionic conductivity of about 3.39 × 10?4 S cm?1 at 25°C, which is much higher than the counterpart nanocomposite of physically blended P(AN‐GMA) and MWCNTs. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Self-healing materials and self-healing mechanisms are two topics that have attracted huge scientific interest in recent decades. Macromolecular chemistry can provide appropriately tailored functional polymers with desired healing properties. Herein, we report the incorporation of glycidyl methacrylate-based (GMA) copolymers in waterborne polyurethanes (WPUs) and the study of their potential healing ability. Two types of copolymers were synthesized, namely the hydrophobic P(BA-co-GMAy) copolymers of GMA with n-butyl acrylate (BA) and the amphiphilic copolymers P(PEGMA-co-GMAy) of GMA with a poly(ethylene glycol) methyl ether methacrylate (PEGMA) macromonomer. We demonstrate that the blending of these types of copolymers with two WPUs leads to homogenous composites. While the addition of P(BA-co-GMAy) in the WPUs leads to amorphous materials, the addition of P(PEGMA-co-GMAy) copolymers leads to hybrid composite systems varying from amorphous to semi-crystalline, depending on copolymer or blend composition. The healing efficiency of these copolymers was explored upon application of two external triggers (addition of water or heating). Promising healing results were exhibited by the final composites when water was used as a healing trigger.  相似文献   

3.
Acrylate‐functionalized copolymers were synthesized by the modification of poly(butyl acrylate‐co‐glycidyl methacrylate) (BA/GMA) and poly(butyl acrylate‐co‐methyl methacrylate‐co‐glycidyl methacrylate). 13C‐NMR analyses showed that no glycidyl methacrylate block longer than three monomer units was formed in the BA/GMA copolymer if the glycidyl methacrylate concentration was kept below 20 mol %. We chemically modified the copolymers by reacting the epoxy group with acrylic acid to yield polymers with various glass‐transition temperatures and functionalities. We studied the crosslinking reactions of these copolymers by differential scanning calorimetry to point out the effect of chain functionality on double‐bond reactivity. Films formed from acrylic acrylate copolymer precursors were finally cured under ultraviolet radiation. Network heterogeneities such as pendant chains and highly crosslinked microgel‐like regions greatly influenced the network structure and, therefore, its viscoelastic properties. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 753–763, 2002  相似文献   

4.
The mechanical properties of the poly (vinyl chloride) (PVC) and poly (glycidyl methacrylate) [poly (GMA)] blend system and the PVC and poly (hydroxyethyl methacrylate) [poly (HEMA)] blend system and their crosslinked films were investigated. At the same time, the mechanical properties for the corresponding graft copolymers such as PVC-g-GMA, PVC-g-HEMA, and their crosslinked films were also investigated in this study. The results showed that the tensile strengths for PVC–poly (GMA) blend systems were higher than those for PVC-g-GMA graft copolymer, and the tensile strengths for PVC-g-HEMA were higher than those for PVC-poly (HEMA) blend systems. However, the mechanical properties for the PVC–poly (GMA) blend system were not affected by the crosslinking of the blend system, but those for PVC-poly (HEMA) and their graft copolymers decreased with an increase of the equivalent ratio ([NCO]/[OH]) of the crosslinker. Finally, the surface hydrophilicity of the PVC-g-HEMA graft copolymer and PVC-poly (HEMA) blends were also assessed through measuring the contact angle. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 307–319, 1998  相似文献   

5.
Blending polypropylene (PP) with biodegradable poly(3‐hydroxybutyrate) (PHB) can be a nice alternative to minimize the disposal problem of PP and the intrinsic brittleness that restricts PHB applications. However, to achieve acceptable engineering properties, the blend needs to be compatibilized because of the immiscibility between PP and PHB. In this work, PP/PHB blends were prepared with different types of copolymers as possible compatibilizers: poly(propylene‐g‐maleic anhydride) (PP–MAH), poly (ethylene‐co‐methyl acrylate) [P(E–MA)], poly(ethylene‐co‐glycidyl methacrylate) [P(E–GMA)], and poly(ethylene‐co‐methyl acrylate‐co‐glycidyl methacrylate) [P(E–MA–GMA)]. The effect of each copolymer on the morphology and mechanical properties of the blends was investigated. The results show that the compatibilizers efficiency decreased in this order: P(E–MA–GMA) > P(E–MA) > P(E–GMA) > PP–MAH; we explained this by taking into consideration the affinity degree of the compatibilizers with the PP matrix, the compatibilizers properties, and their ability to provide physical and/or reactive compatibilization with PHB. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
This work examines the immobilization of myoglobin from horse skeletal muscle in hydrophilic polymer networks. Due to specific changes in the spectroscopic properties of hemoproteins during ligand binding, they could be employed in optical sensing devices. Two immobilization techniques were considered: imbibition and entrapment. Anionic hydrogels composed of methacrylic acid (MAA), cationic hydrogels composed of dimethylamino ethyl methacrylate (DMAEM), and neutral hydrogels composed of poly(ethylene glycol) monomethyl ether monomethacrylate (PEGMA; molecular weight = 200, 400, or 1000), all crosslinked with poly(ethylene glycol) dimethacrylate (PEGDMA) (molecular weight = 200, 600, or 1000), were synthesized by free‐radical solution polymerization. By the imbibition method, MAA‐based hydrogels incorporated the highest amount of myoglobin in comparison with PEGMA or DMAEM polymers. The evaluation of the correlation length of the networks revealed that MAA hydrogels had the highest correlation length in comparison with PEGMA‐containing matrices or DMAEM hydrogels. Release experiments from MAA hydrogels at pHs 5.8 and 7.0 showed that the solute‐transport mechanism was a combination of Fickian and chain relaxation diffusion. Myoglobin‐loaded MAA hydrogels retained their heme reactivity after the immobilization process. The release of myoglobin incorporated by entrapment in MAA–PEGDMA hydrogels was highly influenced by the chain relaxation process. The diffusion coefficients of myoglobin incorporated by entrapment into anionic hydrogels were 2 orders of magnitude smaller (~ 10–13) than those for myoglobin incorporated by imbibition (10–11), both evaluated at pH 7.0. Substrate binding studies indicated that the protein biological activity was not compromised in those hydrogels loaded by the imbibition method, whereas prepolymeric solutions showed detrimental effects on protein stability. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

7.
Disulfonated poly(arylene ether sulfone) (BPS) random copolymers, prepared from a sulfonated monomer, have been considered for use as membrane materials for various applications in water purification and power generation. These membranes can be melt-processed to avoid the use of hazardous solvent-based processes with the aid of a plasticizer, a low molecular weight poly(ethylene glycol) (PEG). PEG was used to modify the glass transition temperature and melt rheology of BPS to enable coextrusion with polypropylene (PP). Our previous paper discussed the miscibility of BPS with PEG and the influence of PEG on the glass transition of BPS. In this study, the rheological properties of disulfonated poly(arylene ether sulfone)s plasticized with poly(ethylene glycol) (PEG) are investigated to identify coextrusion processing conditions with candidate PPs. The effects of various factors including PEG molecular weight, PEG concentration, temperature and BPS molecular weight on blend viscosity were studied. The rheological data effectively lie on the same master curve developed by Bueche and Harding for non-associating polymers such as poly(methyl methacrylate) (PMMA) and polystyrene (PS). Although sulfonated polysulfone contains ionic groups, the form of its viscosity versus shear rate (or frequency) behavior appears to be dominated by the relaxation of polymer entanglements.  相似文献   

8.
The possibility of sorption of technetium‐99 in the form of pertechnetate anion (TcO4?) and the sorption kinetics for removing TcO4? from aqueous solution by chelating polymers based on glycidyl methacrylate (GMA) were investigated. Two samples of macroporous crosslinked poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) (PGME), with different amount of the crosslinker (ethylene glycol dimethacrylate, EGDMA), were synthesized by suspension copolymerization and functionalized with diethylene triamine (deta). We propose that nonspecific sorption of pertechnetate anion via electrostatic interactions takes place at the protonated amino groups of macroporous crosslinked copolymer. The results of batch experiments performed at pH 1–14 showed fast sorption kinetics for removing TcO4? by amino‐functionalized PGME‐deta in a wide range of pH, that is, from 1.0 to 9.0. Almost complete removal of TcO4? (91–98%) was reached within 180 min in the stated pH range (1.0–9.0), with the sorption half‐times of under 25 min. The partitioning coefficients of linear adsorption isotherms, with 180‐min equilibrium time, reach the high values of 2130 mL g?1 and 1698 mL g?1 for the two samples of synthesized PGME‐deta. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
In this study, a comblike amphiphilic graft copolymer containing poly(vinyl chloride) (PVC) backbones and poly(oxyethylene methacrylate) [poly(ethylene glycol) methylether methacrylate (PEGMA)] side chains was facilely synthesized via an atom transfer radical polymerization method. Secondary chlorines in PVC were used as initial sites to graft a poly[poly(ethylene glycol) methylether methacrylate] [P(PEGMA)] brush. The synthesized PVC‐g‐P(PEGMA) graft copolymer served as an efficient additive for the hydrophilicity modification of the poly(vinylidene fluoride) (PVDF) membrane via a nonsolvent‐induced phase‐inversion technique. A larger pore size, higher porosity, and better connectivity were obtained for the modified PVDF membrane; this facilitated the permeability compared to the corresponding virgin PVDF membrane. In addition, the modified PVDF membrane showed a distinctively enhanced hydrophilicity and antifouling resistance, as suggested by the contact angle measurement and flux of bovine serum albumin solution tests, respectively. Accordingly, the PVC‐g‐P(PEGMA) graft copolymer was demonstrated as a successful additive for the hydrophilicity modification, and this study will likely open up new possibilities for the development of efficient amphiphilic PVC‐based copolymers for the excellent hydrophilicity modification of PVDF membranes. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
The gelation and crosslinking features of poly(ethylene glycol) (PEG) hydrogels were scrutinized through the UV polymerization processes of poly(ethylene glycol) methacrylate (PEGMA) and poly(ethylene glycol) dimethacrylate (PEGDMA) mixtures. The real‐time evolutions of the elastic moduli of the prepolymerized mixtures with different crosslinking ratios of PEGMA and PEGDMA and the photoinitiator concentrations were measured during photopolymerization. The rheological properties were compared with other properties of the PEG hydrogels, including the relative changes in the C?C amounts in the mixtures before and after UV irradiation, water swelling ratio, gel fraction, mesh size, and mechanical hardness. As the portion of PEGDMA as a crosslinker increased, the final elastic modulus and gel fraction increased, whereas the swelling ratio and scratch penetration depth at the hydrogel film surface decreased because of the formation of compact networks inside the hydrogels. These results indicate that there was a good correlation between the rheological analysis for predicting the crosslinking transition during photopolymerization and the macroscopic properties of the crosslinked hydrogels. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41939.  相似文献   

11.
Functional, macroporous, beaded copolymers containing epoxy groups were synthesized for immobilization of polyphenol oxidase (PPO) from edible mushroom (Agaricus bisporus). The effect of incorporation of two different sets of monomers such as glycidyl methacrylate (GMA) and allyl glycidyl ether (AGE) and the effect of cross-linking agent ethylene glycol dimethacrylate (EGDM) with varying cross-link densities on binding and expression of mushroom PPO activity were studied. The effect of porogen viz. cyclohexanol and hexanol on PPO immobilization was studied. AGE copolymers with hexanol as a porogen were found to give higher binding and expression of PPO activity than GE polymers. Cross-linking of amino groups of enzyme with 5% glutaraldehyde for 6 h gave a stable binding of PPO on AGE-75(Hex) polymer with storage half-life of approximately 25 days. Under optimum conditions, AGE-75(Hex) polymer gave 70.3% of activity yield while percent retention of PPO activity was found to be 83.5%. Immobilized PPO showed a broader pH, higher temperature and excellent storage stability.  相似文献   

12.
pH‐Responsive amphiphilic branched copolymers were prepared from poly(ethylene glycol) methyl ether methacrylate (PEGMA), 2‐(diethylamino)ethyl methacrylate (DEAEMA), 2‐(tert‐butylamino)ethyl methacrylate (tBAEMA), and ethylene glycol dimethacrylate (EGDMA) utilizing a thiol‐modified free radical polymerization. The molecular structures of copolymers were confirmed by proton nuclear magnetic resonance spectroscopy (1H NMR) and triple‐detection gel permeation chromatography (tri‐GPC). The aqueous solution behaviors of the obtained copolymers were investigated by dynamic light scattering (DLS). The DLS data showed that about 16 nm polymer particles comprising of hydrophobic poly(tert‐butylamino)ethyl methacrylate (PtBAEMA) and poly(diethylaminoethyl methacrylate (PDEAEMA) core, hydrophilic PEGMA corona were formed above pH 8. With the decrease of pH from 8 to 6, a dramatic increase in the hydrodynamic radius of polymer particles from 16 nm to 130 nm was observed resulting from the protonation of the PDEAEMA segment. Moreover, in vitro drug release behaviors of the resulting polymer assemblies at different pH values were also investigated to evaluate their potential as sustained release drug carriers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42183.  相似文献   

13.
A reverse atom transfer radical polymerization (RATRP) with benzoyl peroxide (BPO)/CuCl/2,2-bipyridine (Bpy) was applied onto grafting of poly(methyl methacrylate) (PMMA) and poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMA) from poly(vinylidene fluoride) (PVDF) microfiltration (MF) membrane surfaces, including the pore surfaces. The introduction of peroxide and hydroperoxide groups onto the PVDF membranes was achieved by ultraviolet (UV) irradiation in nitrogen, followed by air exposure. RATRP from UV pretreated hydrophobic PVDF membranes was then performed for attaching well-defined homopolymer. The chemical composition of the modified PVDF membrane surfaces was characterized by attenuated total reflectance (ATR) FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS). The surface and cross-section morphology of membranes were studied by scanning electron microscopy (SEM). The pore sizes of the pristine PVDF and the PMMA grafted PVDF membranes were measured using micro-image analysis and process software. With increase of graft concentration, the pore size of the modified membranes decreased and became uniform. Kinetic studies of homogeneous (in toluene solution) system revealed a linear increase in molecular weight with the reaction time and narrow molecular weight distribution, indicating that the chain growth from the membrane surface was a “controlled” or “living” grafting process. The introduction of the well-defined PMMA on the PVDF membrane gave rise to hydrophilicity. Protein adsorption and protein solution permeation experiments revealed that the UV pretreated hydrophobic PVDF membrane subjected to surface-initiated RATRP of methyl methacrylate (MMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) exhibited good antifouling property.  相似文献   

14.
This works aims at (i) studying the antiadhesive properties and the hemocompatibility of poly[2‐(dimethylamino)ethyl methacrylate]‐co‐poly[(ethylene glycol)methacrylate] [poly(DMAEMA‐co‐PEGMA)] copolymers and (ii) investigating the insulin delivery kinetics through hydrogels at physiological pH. A series of poly(DMAEMA‐co‐PEGMA) hydrogels have been synthesized, and their controlled composition was confirmed by X‐ray photoelectron spectroscopy. Then, antibiofouling properties of hydrogels—fibrinogen, erythrocytes, and thrombocytes adhesion—are correlated to their molecular compositions through their hydrophilic properties. As DMAEMA/PEGMA ratio of 70/30 (D70) offers the best compromise between pH sensitivity and hemocompatibility, it is selected for investigating the kinetic rate of insulin release at physiological pH, and the diffusion coefficient of insulin in gel is found to be 0.64 × 10?7 cm2 s?1. Overall, this study unveils that poly(DMAEMA‐co‐PEGMA) copolymers are promising hemocompatible materials for drug delivery systems. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42365.  相似文献   

15.
Highly open porous polymer foams formed from high internal phase emulsions (polyHIPEs) are attracting significant interest because of their potential applications in many areas of advanced materials science. In this work, the influence of the crosslinker or co‐crosslinkers of different molecular weights on the morphology and mechanical properties of polyHIPEs containing glycidyl methacrylate (GMA) was studied. Several poly(ethylene glycol) dimethacrylate (PEGDMA) crosslinkers were considered. The results show that introducing higher molecular weight crosslinkers into polyHIPEs produces a more open structure, with significantly increased compression strength and deformation at breakage. This eliminated the undesirable brittleness and chalkiness commonly found in polyHIPE materials. The Young's modulus of GMA‐based polyHIPEs containing 40% poly(ethylene glycol) dimethacrylate increased by 50% and the crush strength by 400% when compared with traditional GMA/ethylene glycol dimethylacrylate polyHIPEs. This improvement in mechanical properties is expected to improve the suitability of polyHIPEs for use in a wide range of applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46295.  相似文献   

16.
Monofunctional poly(ethylene oxide) macroinitiators with a molecular weight of 2000, 5000, 10?000, 20?000 and bifunctional poly(ethylene oxide) macroinitiators with a molecular weight of 20?000 were used for the atom transfer radical polymerisation (ATRP) of hydroxyethyl methacrylate (HEMA) in ethylene glycol as a solvent. The polymerisation proceeds in a controlled way up to high conversions. The molecular weight of the obtained copolymers increases linearly with conversion. A high rate of polymerisation was observed for the ATRP of HEMA. The effect of the poly(ethylene oxide) moiety on the course of the reaction is limited to solvating effects. The surface analysis of poly(ethylene oxide)/poly(hydroxyethyl methacrylate) block copolymers by means of atomic force microscopy in tapping mode using phase imaging shows phase separated domains with characteristic features related to the volume fraction of the respective blocks.  相似文献   

17.
The biodegradable cholesteryl-(l-lactic acid) n (CPLA) was synthesized via ring opening polymerization of l-lactide in the presence of cholesterol as an initiator and the catalytic amount of Sn(Oct)2. The resulting monohydroxyl-terminated CPLA was subsequently converted to a bromine-ended macroinitiator (CPLA-Br) by esterification with 2-bromoisobutyryl bromide. Amphiphilic block-brush copolymers with different lengths of hydrophilic block (CPLA-b-P(PEGMA)4 and CPLA-b-P(PEGMA)12) were synthesized in a subsequent atom transfer radical polymerization of the poly(ethylene glycol)monomethyl ether methacrylate (PEGMA). The prepared polymers were characterized by FTIR, 1H NMR and GPC. The self-assembly of the copolymers into the micellar aggregates in aqueous media was followed with dynamic light scattering, transmission electron microscopy and fluorescence analysis. The CMC values of the CPLA-b-P(PEGMA)4 and CPLA-b-P(PEGMA)12 samples were estimated approximately 56 × 10?4 and 72 × 10?4 g/L in an aqueous solution by fluorescence probe technique, respectively. The hydrophobic/hydrophilic chain ratio of the amphiphilic copolymers could have demonstrated a correlation with micelle formation ability and inter-micellar aggregation in an aqueous solution. Using the naproxen as a hydrophobic model drug, the drug-loading efficiency and drug release properties of the CPLA–PEG nanoparticles were investigated. In vitro release study of the naproxen-loaded micelles with about 54–60 % loading efficiency and 11–12 % loading capacity was performed using dialysis method in phosphate-buffered solution at 37 °C. Accordingly, these polymeric micelles may be provided as an effective drug carrier for drug controlled release by modulating the copolymer composition and molecular weight of blocks.  相似文献   

18.
Various random copolymers of poly(poly(ethylene glycol) methacrylate-co-1H,1H,2H,2H-perfluorooctylmethacrylate) (p(PEGMA-co-FOMA)) with different poly(ethylene glycol) (PEG) chain length (Mn = 300, 475, and 1100) and different FOMA content have been synthesized in supercritical carbon dioxide (scCO2) via free-radical polymerization. The copolymers containing above 50 wt% FOMA could be used as a stabilizer for the polymerization of methyl methacrylate (MMA) in scCO2. For PEGMA (300) and PEGMA (475) copolymers, the copolymeric stabilizer with 67–69 wt% FOMA content was shown to be optimal to produce micrometer-size spherical PMMA powder. The size of pendant PEG group and the composition of copolymer as well as the concentration of MMA affected on the size of PMMA particles and the stability of PMMA latexes in CO2.  相似文献   

19.
This study is an attempt to explore the effectiveness of thermoplastic copolyester elastomer (TPCE) as a toughening agent for improving the impact strength of PLA. Biobased Hytrel® thermoplastic copolyester of polyether glycol and polybutylene terephthalate was selected as the TPCE of choice for this study. Blends of PLA/Hytrel at varying weight ratios were prepared using extrusion followed by injection molding technique. Optimal synergies of two polymers were found in the PLA/Hytrel (70/30) blend, showing impact strength of 234 J/m, a sixfold increase compared to neat PLA. In order to obtain further enhancement in toughness, different functionalized terpolymers were added to accomplish reactive compatibilization. A series of functionalized terpolymers, ethylene methyle acrylate‐glycidyl methacrylate (EMA‐GMA), ethylene butyl acrylate‐glycidyl methacrylate (EBA‐GMA), ethylene methyl acrylate‐maleic anhydride (EMA‐MaH), and ethylene butyl acrylate‐maleic anhydride (EBA‐MaH) were selected. Comparing PLA ternary blends with different terpolymers, GMA containing terpolymers showed better impact toughness compared to MaH terpolymer blends. Unique fracture surface morphology showing debonding cavitation and massive shear yielding in the ternary blends containing EMA‐GMA resulted in super toughened blends. Highest zero shear viscosity and storage modulus was also observed for ternary blends with EMA‐GMA. Under the processing conditions and blend ratio investigated, EMA‐GMA showed better efficiency in improving the toughness of the PLA blends. POLYM. ENG. SCI., 58:280–290, 2018. © 2017 Society of Plastics Engineers  相似文献   

20.
Poly(ethylene glycol)‐poly(L ‐lactide) diblock and triblock copolymers were prepared by ring‐opening polymerization of L ‐lactide with poly(ethylene glycol) methyl ether or with poly(ethylene glycol) in the presence of stannous octoate. Molecular weight, thermal properties, and crystalline structure of block copolymers were analyzed by 1H‐NMR, FTIR, GPC, DSC, and wide‐angle X‐ray diffraction (WAXD). The composition of the block copolymer was found to be comparable to those of the reactants. Each block of the PEG–PLLA copolymer was phase separated at room temperature, as determined by DSC and WAXD. For the asymmetric block copolymers, the crystallization of one block influenced much the crystalline structure of the other block that was chemically connected to it. Time‐resolved WAXD analyses also showed the crystallization of the PLLA block became retarded due to the presence of the PEG block. According to the biodegradability test using the activated sludge, PEG–PLLA block copolymer degraded much faster than PLLA homopolymers of the same molecular weight. © 1999 John Wiley amp; Sons, Inc. J Appl Polym Sci 72: 341–348, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号