首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toughening mechanisms of nanoparticle-modified epoxy polymers   总被引:3,自引:0,他引:3  
An epoxy resin, cured with an anhydride, has been modified by the addition of silica nanoparticles. The particles were introduced via a sol-gel technique which gave a very well-dispersed phase of nanosilica particles which were about 20 nm in diameter. Atomic force and electron microscopies showed that the nanoparticles were well-dispersed throughout the epoxy matrix. The glass transition temperature was unchanged by the addition of the nanoparticles, but both the modulus and toughness were increased. The measured modulus was compared to theoretical models, and good agreement was found. The fracture energy increased from 100 J/m2 for the unmodified epoxy polymer to 460 J/m2 for the epoxy polymer with 13 vol% of nanosilica. The fracture surfaces were inspected using scanning electron and atomic force microscopies, and the results were compared to various toughening mechanisms proposed in the literature. The toughening mechanisms of crack pinning, crack deflection and immobilised polymer were discounted. The microscopy showed evidence of debonding of the nanoparticles and subsequent plastic void growth. A theoretical model of plastic void growth was used to confirm that this mechanism was indeed most likely to be responsible for the increased toughness that was observed due to the presence of the nanoparticles.  相似文献   

2.
Silica nanoparticles (SN) and epoxidized natural rubber (ENR) were used as binary component fillers in toughening diglycidyl ether of bisphenol A (DGEBA) cured cycloaliphatic polyamine. For a single component filler system, the addition of ENR resulted in significantly improved fracture toughness (KIC) but reduction of glass transition temperature (Tg) and modulus of epoxy resins. On the other hand, the addition of SN resulted in a modest increase in toughness and Tg but significant improvement in modulus. Combining and balancing both fillers in hybrid ENR/SN/epoxy systems exhibited improvements in the Young’s modulus and Tg, and most importantly the KIC, which can be explained by synergistic impact from the inherent characteristics associated with each filler. The highest KIC was achieved with addition of small amounts of SN (5 wt.%) to the epoxy containing 5–7.5 wt.% ENR, where the KIC was distinctly higher than with the epoxy containing ENR alone at the same total filler content. Evidence through scanning electron microscopy (SEM) and transmission optical microscopy (TOM) revealed that cavitation of rubber particles with matrix shear yielding and particle debonding with subsequent void growth of silica nanoparticles were the main toughening mechanisms for the toughness improvements for epoxy. The fracture toughness enhancement for hybrid nanocomposites involved an increase in damage zone size in epoxy matrix due to the presence of ENR and SN, which led to dissipating more energy near the crack-tip region.  相似文献   

3.
T.H. Hsieh  K. Masania  S. Sprenger 《Polymer》2010,51(26):6284-6294
The present paper considers the mechanical and fracture properties of four different epoxy polymers containing 0, 10 and 20 wt.% of well-dispersed silica nanoparticles. Firstly, it was found that, for any given epoxy polymer, their Young’s modulus steadily increased as the volume fraction, vf, of the silica nanoparticles was increased. Modelling studies showed that the measured moduli of the different silica-nanoparticle filled epoxy polymers lay between upper-bound values set by the Halpin-Tsai and the Nielsen ‘no-slip’ models, and lower-bound values set by the Nielsen ‘slip’ model; with the last model being the more accurate at relatively high values of vf. Secondly, the presence of silica nanoparticles always led to an increase in the toughness of the epoxy polymer. However, to what extent a given epoxy polymer could be so toughened was related to structure/property relationships which were governed by (a) the values of glass transition temperature, Tg, and molecular weight, Mc, between cross-links of the epoxy polymer, and (b) the adhesion acting at the silica nanoparticle/epoxy-polymer interface. Thirdly, the two toughening mechanisms which were operative in all the epoxy polymers containing silica nanoparticles were identified to be (a) localised shear bands initiated by the stress concentrations around the periphery of the silica nanoparticles, and (b) debonding of the silica nanoparticles followed by subsequent plastic void growth of the epoxy polymer. Finally, the toughening mechanisms have been quantitatively modelled and there was good agreement between the experimentally-measured values and the predicted values of the fracture energy, Gc, for all the epoxy polymers modified by the presence of silica nanoparticles. The modelling studies have emphasised the important roles of the stress versus strain behaviour of the epoxy polymer and the silica nanoparticle/epoxy-polymer interfacial adhesion in influencing the extent of the two toughening mechanisms, and hence the overall fracture energy, Gc, of the nanoparticle-filled polymers.  相似文献   

4.
An investigation of the thermo-mechanical behavior of silica nanoparticle reinforcement in two epoxy systems consisting of diglycidyl ether of bisphenol F (DGEBF) and cycloaliphatic epoxy resins was conducted. Silica nanoparticles with an average particle size of 20 nm were used. The mechanical and thermal properties, including coefficient of thermal expansion (CTE), modulus (E), thermal stability, fracture toughness (KIC), and moisture absorption, were measured and compared against theoretical models. It was revealed that the thermal properties of the epoxy resins improved with silica nanoparticles, indicative of a lower CTE due to the much lower CTE of the fillers, and furthermore, DGEBF achieved even lower CTE than the cycloaliphatic system at the same wt.% filler content. Equally as important, the moduli of the epoxy systems were increased by the addition of the fillers due to the large surface contact created by the silica nanoparticles and the much higher modulus of the filler than the bulk polymer. In general, the measured values of CTE and modulus were in good agreement with the theoretical model predictions. With the Kerner and Halpin-Tsai models, however, a slight deviation was observed at high wt.% of fillers. The addition of silica nanoparticles resulted in an undesirable reduction of glass transition temperature (Tg) of approximately 20 °C for the DGEBF system, however, the Tg was found to increase and improve for the cycloaliphatic system with silica nanoparticles by approximately 16 °C. Furthermore, the thermal stability improved with addition of silica nanoparticles where the decomposition temperature (Td) increased by 10 °C for the DGEBF system and the char yield significantly improved at 600 °C. The moisture absorption was also reduced for both DGEBF and cycloaliphatic epoxies with filler content. Lastly, the highest fracture toughness was achieved with approximately 20 wt.% and 15 wt.% of silica nanoparticles in DGEBF and cycloaliphatic epoxy resins, respectively.  相似文献   

5.
Silica nanoparticles possessing three different diameters (23, 74 and 170 nm) were used to modify a piperidine-cured epoxy polymer. Fracture tests were performed and values of the toughness increased steadily as the concentration of silica nanoparticles was increased. However, no significant effects of particle size were found on the measured value of toughness. The toughening mechanisms were identified as (i) the formation of localised shear-band yielding in the epoxy matrix polymer which is initiated by the silica nanoparticles, and (ii) debonding of the silica nanoparticles followed by plastic void growth of the epoxy matrix polymer. These mechanisms, and hence the toughness of the epoxy polymers containing the silica nanoparticles, were modelled using the Hsieh et al. approach (Polymer 51, 2010, 6284–6294). However, it is noteworthy that previous modelling work has required the volume fraction of debonded silica particles to be measured from the fracture surfaces but in the present paper a new and more fundamental approach has been proposed. Here finite-element modelling has demonstrated that once one silica nanoparticle debonds then its nearest neighbours are shielded from the applied stress field, and hence may not debond. Statistical analysis showed that, for a good, i.e. random, dispersion of nanoparticles, each nanoparticle has six nearest neighbours, so only one in seven particles would be predicted to debond. This approach therefore predicts that only 14.3% of the nanoparticles present will debond, and this value is in excellent agreement with the value of 10–15% of those nanoparticles present debonding which was recorded via direct observations of the fracture surfaces. Further, this value of about 15% of silica nanoparticles particles present debonding has also been noted in other published studies, but has never been previously explained. The predictions from the modelling studies of the toughness of the various epoxy polymers containing the silica nanoparticles were compared with the measured fracture energies and the agreement was found to be good.  相似文献   

6.
The mechanical properties, thermomechanical properties, and fracture mechanic properties of block-copolymer (BCP), core–shell rubber (CSR) particles, and their hybrids in bulk epoxy/anhydride system were investigated at 23 °C. The results show that fracture toughness was increased by more than 268% for 10 wt % BCP, 200% for 12 wt % of CSR particles, and 100% for hybrid systems containing 3 wt % of each, BCP and CSR. The volume content of nanoparticles influences the final morphology and thus influences the tensile properties and fracture toughness of the modified systems. The toughening mechanisms induced by the BCP and CSR particles were identified as (1) localized plastic shear-band yielding around the particles and (2) cavitation of the particles followed by plastic void growth in the epoxy polymer. These mechanisms were modeled using the Hsieh et al. approach and the values of GIc of the different modified systems were calculated. Excellent agreement was found between the predicted and the experimentally measured fracture energies. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48471.  相似文献   

7.
A sonochemical technique is used for in situ coating of iron oxide (Fe3O4) nanoparticles on outer surface of MWCNTs. These Fe3O4/MWCNTs were characterized using a high‐resolution transmission electron microscope (HRTEM), X‐ray diffraction, and thermogravimetric analysis. The as‐prepared Fe3O4/MWCNTs composite nanoparticles were further used as reinforcing fillers in epoxy‐based resin (Epon‐828). The nanocomposites of epoxy were prepared by infusion of (0.5 and 1.0 wt %) pristine MWCNTs and Fe3O4/MWCNTs composite nanoparticles. For comparison purposes, the neat epoxy resin was also prepared in the same procedure as the nanocomposites, only without nanoparticles. The thermal, mechanical, and morphological tests were carried out for neat and nanocomposites. The compression test results show that the highest improvements in compressive modulus (38%) and strength (8%) were observed for 0.5 wt % loading of Fe3O4/MWCNTs. HRTEM results show the uniform dispersion of Fe3O4/MWCNTs nanoparticles in epoxy when compared with the dispersion of MWCNTs. These Fe3O4/MWCNTs nanoparticles‐infused epoxy nanocomposite shows an increase in glass transition (Tg) temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
We present a simple, out-of-autoclave approach to improve the delamination toughness of fiber-reinforced composites using epoxy interlayers containing 20 wt.% polyamide-12 (PA) particles and 1 wt.% multi-walled carbon nanotubes (MWCNTs). Composites were prepared by integrating partially cured thin films at the laminate mid-plane using vacuum-assisted resin transfer molding. The introduction of epoxy/PA interlayers increased fracture toughness due to the ductile deformation and crack bridging of PA particles within an interlaminar damage zone with uniform thickness of about 20 μm. Composites interlayered with epoxy/PA/MWCNT exhibited nearly 2.5 and 1.5 times higher fracture toughness than composites containing neat epoxy and epoxy/PA interlayers, respectively, without an observable increase in interlaminar thickness. The fracture surface was analyzed to identify failure modes responsible for the fracture toughness improvement. The MWCNTs are proposed to inhibit critical loading of defects by minimizing stress concentration within the interlaminar region, thereby enabling greater deformation of the PA particles during fracture.  相似文献   

9.
Different amounts of multiwalled carbon tubes (MWCNTs) were incorporated into an epoxy resin based on diglycidyl ether of bisphenol A and both epoxy precursor and composite were cured with 4,4′‐diamino diphenyl sulfone. Transmission and scanning electron microscopy demonstrated that the carbon nanotubes are dispersed well in the epoxy matrix. Differential scanning calorimetry measurements confirmed the decrease in overall cure by the addition of MWCNTs. A decrease in volume shrinkage of the epoxy matrix caused by the addition of MWCNTs was observed by pressure–volume–temperature measurements. Thermomechanical and dynamic mechanical analysis were performed for the MWCNT/epoxy composites, showing that the Tg was slightly affected, whereas the dimensional stability and stiffness are improved by the addition of MWCNTs. Electrical conductivity measurements of the composite samples showed that an insulator to conductor transition takes place between 0.019 and 0.037 wt % MWCNTs. The addition of MWCNTs induces an increase in both impact strength (18%) and fracture toughness (38%) of the epoxy matrix with very low filler content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
We prepared cycloolefin copolymer (COC)/fumed silica nanocomposites by melt compounding to study the effect of the filler dimensions (filler surface area) on the physical properties, with particular attention to their thermal, mechanical, and optical behaviors. Thermogravimetric analysis revealed a positive contribution of silica nanoparticles to the thermal degradation resistance of COC, as the decomposition temperature of the nanofilled samples increased by 40°C with respect to that of the unfilled matrix. Dynamic mechanical thermal analysis and quasi‐static tensile tests of the nanocomposites evidenced a slight stiffening effect, proportional to the nanofiller surface area, without any reduction in the fracture toughness. Creep resistance of the nanocomposites was increased by the addition of silica nanoparticles, especially when high‐surface‐area nanoparticles were used. The positive effect of the nanoparticles on the viscoelastic and fracture behavior was related to the uniform dispersion of silica aggregates in the matrix. Ultraviolet–visible spectrometry measurements evidenced that the original transparency of neat COC was practically maintained after the addition of silica nanoparticles. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Nanocomposites gained more and more importance in the last few years because of their improved performance over the neat polymer matrix, that is, toughness and stiffness can be enhanced simultaneously by the addition of nanoparticles. However, the dispersion of these particles in the matrix remains a big challenge. In this study, two types of TiO2 nanoparticles were dispersed in two different epoxy resins by means of ultrasound. The particle size development in dependence on the dispersion time was investigated by dynamic light scattering for the different material systems. Furthermore, the influence of the viscosity on the sonication process' efficiency was analyzed. The resulting nanocomposites were tested for fracture and Charpy toughness. SEM images revealed that the improved fracture toughness properties are correlated to a rougher fracture surface, whose formation dissipates more energy. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
The effect of rubber nanoparticles on mechanical properties and fracture toughness was investigated. Rubber nanoparticles of 2–3 nm were in situ synthesized in epoxy taking advantage of the reaction of an oligomer diamine with epoxy. The chemical reaction was verified by gel permeation chromatography (GPC) and 1HNMR, and the microstructure was characterized by transmission electron microscope. The rubber nanoparticles caused much less Young's modulus deterioration but toughened epoxy to a similar degree in comparison with their peer liquid rubber that formed microscale particles during curing. Fifteen wt % of rubber nanoparticles increased fracture energy from 140 to 840 J/m2 with Young's modulus loss from 2.85 to 2.49 GPa. The toughening mechanism might be the stress relaxation of the matrix epoxy leading to larger plastic work absorbed at the crack tip; there is no particle cavitation or deformation; neither crack deflection nor particle bridging were observed. The compound containing rubber nanoparticles demonstrates Newtonian liquid behavior with increasing shear rate; it shows lower initial viscosity at low shear rate than neat epoxy; this provides supplementary evidence to NMR and GPC result. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Plant oil based alkyd resin was prepared from jatropha oil and blended with epoxy resin. Subsequently, alkyd/epoxy/NiO nanocomposites with different wt % of NiO nanoparticles have been prepared by mechanical mixing of the designed components. The structure, morphology, and performance characteristics of the nanocomposites were studied by UV‐visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and universal testing machine (UTM). The alkyd/epoxy/NiO nanocomposites showed the gradual increase in thermal stability with increasing NiO content. With 3 wt % NiO content the tensile strength of the nanocomposite increased by 19 MPa (more than twofold) when compared with the pristine polymer. Limiting oxygen index (LOI) value of the nanocomposites indicate that the incorporation of NiO nanoparticles even in 1 wt % can greatly improves the flame retardant property of the nanocomposites. This study confirms the strong influence of NiO nanoparticles on the thermal, mechanical, and flame retardant properties of the alkyd/epoxy/NiO nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41490.  相似文献   

14.
Herein, the fracture toughness of ternary epoxy systems containing nanosilica and hollow glass microspheres (HGMS) is investigated. The experimental measurements reveal synergistic fracture toughness in some hybrid compositions: The incorporation of 10 phr of HGMS and nanosilica alone modify the fracture toughness of epoxy by 39% and 91%, respectively. However, use of 10 phr hybrid modifier can enhance the fracture toughness of the resin up to 120%. Observations reveal different toughening mechanisms for the blends i.e., plastic deformation for silica nanoparticles and crack bifurcation for HGMS. Both of these toughening mechanisms additively contribute to the synergism in ternary epoxies.  相似文献   

15.
This work studied the effects of adding short basalt fibers (BFs) and multi-walled carbon nanotubes (MWCNTs), both separately and in combination, on the mechanical properties, fracture toughness, and electrical conductivity of an epoxy polymer. The surfaces of the short BFs were either treated using a silane coupling agent or further functionalized by atmospheric plasma to enhance the adhesion between the BFs and the epoxy. The results of a single fiber fragmentation test demonstrated a significantly improved BF/epoxy adhesion upon applying the plasma treatment to the BFs. This resulted in better mechanical properties and fracture toughness of the composites containing the plasma-activated BFs. The improved BF/epoxy adhesion also affected the hybrid toughening performance of the BFs and MWCNTs. In particular, synergistic toughening effects were observed when the plasma-activated BFs/MWCNTs hybrid modifiers were used, while only additive toughening effects occurred for the silane-sized BFs/MWCNTs hybrid modifiers. This work demonstrated a potential to develop strong, tough, and electrically conductive epoxy composites by adding hybrid BF/MWCNT modifiers.  相似文献   

16.
Poly (acrylonitrile‐butadiene‐styrene) (ABS) was used to modify diglycidyl ether of bisphenol‐A type of epoxy resin, and the modified epoxy resin was used as the matrix for making TiO2 reinforced nanocomposites and were cured with diaminodiphenyl sulfone for superior mechanical and thermal properties. The hybrid nanocomposites were characterized by using thermogravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), universal testing machine (UTM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The bulk morphology was carefully analyzed by SEM and TEM and was supported by other techniques. DMA studies revealed that the DDS‐cured epoxy/ABS/TiO2 hybrid composites systems have two Tgs corresponding to epoxy and ABS rich phases and have better load bearing capacity with the addition of TiO2 particles. The addition of TiO2 induces a significant increase in tensile properties, impact strength, and fracture toughness with respect to neat blend matrix. Tensile toughness reveals a twofold increase with the addition of 0.7 wt % TiO2 filler in the blend matrix with respect to neat blend. SEM micrographs of fractured surfaces establish a synergetic effect of both ABS and TiO2 components in the epoxy matrix. The phenomenon such us cavitation, crack path deflection, crack pinning, ductile tearing of the thermoplastic, and local plastic deformation of the matrix with some minor agglomerates of TiO2 are observed. However, between these agglomerates, the particles are separated well and are distributed homogeneously within the polymer matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
The addition of silica nanoparticles (23 nm, 74 nm, and 170 nm) to a lightly crosslinked, model epoxy resin, was studied. The effect of silica nanoparticle content and particle size on glass transition temperature (Tg), coefficient of thermal expansion (CTE), Young's modulus (E), yield stress (σ), fracture energy (GIC) and fracture toughness (KIC), were investigated. The toughening mechanisms were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and transmission optical microscopy (TOM). The experimental results revealed that the addition of silica nanoparticles did not have a significant effect on Tg or the yield stress of epoxy resin, i.e. the yield stress and Tg remained constant regardless of silica nanoparticle size. As expected, the addition of silica nanoparticles had a significant impact on CTE, modulus and fracture toughness. The CTE values of nanosilica-filled epoxies were found to decrease with increasing silica nanoparticle content, which can be attributed to the much lower CTE of the silica nanoparticles. Interestingly, the decreases in CTE showed strong particle size dependence. The Young's modulus was also found to significantly improve with addition of silica nanoparticles and increase with increasing filler content. However, the particle size did not exhibit any effect on the Young's modulus. Finally, the fracture toughness and fracture energy showed significant improvements with the addition of silica nanoparticles, and increased with increasing filler content. The effect of particle size on fracture toughness was negligible. Observation of the fracture surfaces using SEM and TOM showed evidence of debonding of silica nanoparticles, matrix void growth, and matrix shear banding, which are credited for the increases in toughness for nanosilica-filled epoxy systems. Shear banding mechanism was the dominant mechanism while the particle debonding and plastic void growth were the minor mechanisms.  相似文献   

18.
Carbon fiber-reinforced epoxy (CF/EP) composites have been widely used in aerospace industry, while poor electrical conductivity and interlaminar shear fracture toughness could reduce their safety as structural components in use. In this work, we achieved simultaneous improvement in electrical conductivity and interlaminar shear strength through interleaved multi-walled carbon nanotubes (MWCNTs) doped thermoplastic polyurethane (TPU) conductive thin films (CTFs), which were prepared by a solution casting method. The experimental results showed that the electrical conductivity of the laminates increased by about 13 and 16 times in the transverse and thickness directions with only about 1 wt % MWCNTs content in the laminates. The end-notch flexure (ENF) tests showed that the mode II interlaminar fracture toughness (GIIC) of composites with 10 wt % MWCNTs CTF interleaf shows a significant increase of about 106%. The enhancement mechanism was further explored through microscopic morphological observation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47988.  相似文献   

19.
We investigated the effect of silica nanoparticles on the mechanical property and fracture toughness of two epoxy systems cured by Jeffamine D230 (denoted J230) and 4,4′-diaminodiphenyl sulfone (denoted DDS), respectively. Toughening mechanisms were identified by a tailor-loaded compact tension method which quantitatively recorded the deformation of a damage zone in the vicinity of a sub-critically propagated sharp crack tip. 20 wt% silica nanoparticles' fraction provided 40% improvement in Young's modulus for both systems; it improved the toughness of J230-cured epoxy from 0.73 to 1.68 MPa m1/2, and for the other system improved from 0.51 to 0.82 MPa m1/2. The nanoparticles not only stiffen, strengthen and toughen epoxy, but reduce the effect of flaws on mechanical performance as well. In both systems, nanosilica particle deformation, internal cavitation and interface debonding were not found, different to previous reports. This could be due to the various hardeners used or different identification techniques employed. The toughening mechanisms of the J230-cured nanocomposite were attributed to the formation and development of a thin dilatation zone and nanovoids, both of which were induced, constrained and thwarted by the stress fields of the silica nanoparticles. Regarding 10 wt% silica-toughen epoxy cured by J230, a thicker and shorter dilatation zone was found, where neither nanoparticles nor nanovoids were observed. With regard to the DDS-cured system, much less dilatation and voids were found due to the hardener used, leading to moderately improved toughness.  相似文献   

20.
Poly(acrylonitrile‐styrene‐butadiene) (ABS) was used to modify diglycidyl ether of bisphenol‐A (DGEBA) type epoxy resin, and the modified epoxy resin was used as the matrix for making multiwaled carbon tubes (MWCNTs) reinforced composites and were cured with diamino diphenyl sulfone (DDS) for better mechanical and thermal properties. The samples were characterized by using infrared spectroscopy, pressure volume temperature analyzer (PVT), thermogravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), thermo mechanical analyzer (TMA), universal testing machine (UTM), and scanning electron microscopy (SEM). Infrared spectroscopy was employed to follow the curing progress in epoxy blend and hybrid composites by determining the decrease of the band intensity due to the epoxide groups. Thermal and dimensional stability was not much affected by the addition of MWCNTs. The hybrid composite induces a significant increase in both impact strength (45%) and fracture toughness (56%) of the epoxy matrix. Field emission scanning electron micrographs (FESEM) of fractured surfaces were examined to understand the toughening mechanism. FESEM micrographs reveal a synergetic effect of both ABS and MWCNTs on the toughness of brittle epoxy matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号