共查询到20条相似文献,搜索用时 22 毫秒
1.
Bis(4‐cyanato‐3,5‐dimethylphenyl)anisylmethane was prepared by treating CNBr with bis(4‐hydroxy‐3,5‐dimethylphenyl)anisylmethane and blended with commercial epoxy resin in different ratios and cured at 120°C for 2 h, 180°C for 1 h, and postcured at 220°C for 1 h using diamino diphenyl methane as curing agent. Castings of neat resin and blends were prepared and characterized. The composite laminates were also fabricated with glass fiber using the same composition. The tensile strength of the composites increased with increase in cyanate content (3, 6, and 9%) from 322 to 355 MPa. The fracture toughness values also increased from 0.7671 kJ/m2, for neat epoxy resin, to 0.8615 kJ/m2, for 9% cyanate ester‐modified epoxy system. The 10% weight loss temperature of pure epoxy (358°C) was increased to 390°C by the incorporation of cyanate ester resin. The incorporation of cyanate ester up to 9% in the epoxy resin increases the Tg from 143 to 147°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
2.
A series of bismaleimides was synthesized from bis(4‐amino‐3, 5‐dimethylphenyl) (X) phenyl methane (X = 3′chloro, 3′‐bromo, 3′‐benzyloxy, 4′‐chloro, 4′‐fluoro) and maleic anhydride. The bismaleimides were subsequently polymerized with various diamines by Michael addition to yield novel polyaspartimides. All the polymers exhibited good solubility in organic solvents and the inherent viscosity of the polymers were in the range of 0.40–0.56 dL/g, which is good enough to fabricate composites and films. The temperature at which 10% weight loss occurred was in the range of 390–441°C. The polymers had high glass transition temperature in the range of 205–275°C and left about 31.95–84.20% char yield at 800°C indicating that they have good self‐extinguishing property. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
3.
BACKGROUND: Wholly aromatic polyamides (aramids) are high‐performance polymeric materials with outstanding heat resistance and excellent chemical stabilities due to chain stiffness and intermolecular hydrogen bonding of amide groups. Synthesis of structurally well‐designed monomers is an effective strategy to prepare modified forms of these aramids to overcome lack of organo‐solubility and processability limitations. RESULTS: A novel class of wholly aromatic polyamides was prepared from a new diamine, namely 2,2′‐bis(p‐phenoxyphenyl)‐4,4′‐diaminodiphenyl ether (PPAPE), and two simple aromatic dicarboxylic acids. Two reference polyamides were also prepared by reacting 4,4′‐diaminodiphenyl ether with the same comonomers under similar conditions. M?w and M?n of the resultant polymers were 8.0 × 104 and 5.5 × 104 g mol?1, respectively. Polymers resulting from PPAPE exhibited a nearly amorphous nature. These polyamides exhibited excellent organo‐solubility in a variety of polar solvents and possessed glass transition temperatures up to 200 °C. The 10% weight loss temperatures of these polymers were found to be up to 500 °C under a nitrogen atmosphere. The polymers obtained from PPAPE could be cast into transparent and flexible films from N,N‐dimethylacetamide solution. CONCLUSION: The results obtained show that the new PPAPE diamine can be considered as a good monomer to enhance the processability of its resultant aromatic polyamides while maintaining their high thermal stability. The observed characteristics of the polyamides obtained make them promising high‐performance polymeric materials. Copyright © 2009 Society of Chemical Industry 相似文献
4.
5.
Hideyuki Nakano Toru Takahashi Takahiro Tanino Yasuhiko Shirota 《Dyes and Pigments》2010,84(1):102-107
Novel azobenzene-based photo-responsive amorphous molecular materials, 4-[bis(9,9-dimethylfluoren-2-yl)amino]-4′-cyanoazobenzene and 4-[bis(9,9-dimethylfluoren-2-yl)amino]-4′-nitroazobenzene, have been synthesized and the formation of surface relief grating on their amorphous films has been investigated. It was found that a relatively large surface relief grating could be inscribed on both amorphous films upon interference exposure to the writing laser beams. The modulation depth of the surface relief grating inscribed on the amorphous film of the cyano-substituted material was found to be larger than that inscribed on the film of the nitro-substituted one and seemed to be comparable to that inscribed on the amorphous film of the parent material, 4-[bis(9,9-dimethylfluoren-2-yl)amino]azobenzene. These results were discussed from the viewpoint of their trans–cis photoisomerizations as amorphous films and glass-transition temperatures. 相似文献
6.
New linear polyurethanes derived from 4,4′‐bis(6‐hydroxyhexylthio)diphenyl ether and methylene bis(4‐phenyl isocyanate) were synthesized by either melt or solution polymerization with a strictly equimolar ratio of the monomers. In the solution method, good results were obtained with the aprotic solvent N,N‐dimethylformamide at an approximately 20 wt % concentration of the monomers, with dibutyltin dilaurate as a catalyst, the process being conducted at 90–100°C for 4 h. The basic physicochemical properties of the polymers were investigated with thermogravimetric analysis and differential scanning calorimetry. The molecular weight distribution was determined by gel permeation chromatography. Shore hardness and tensile test results were also examined. The structures of the resulting products were confirmed with elemental analysis, Fourier transform infrared, and X‐ray diffractometry. The properties of the copolyurethanes, containing various amounts of poly(oxytetramethylene) diol (~1000) or polycaprolactone diol (~1250) and synthesized under the conditions for the nonsegmented polyurethanes, were also examined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 380–388, 2003 相似文献
7.
Shou‐Ri Sheng Wei Zhang Chun Lu Jiong Wan Xiao‐Ling Liu Cai‐Sheng Song 《应用聚合物科学杂志》2012,126(1):297-303
A series of new cardo poly(ether imide)s bearing flexible ether and bulky xanthene pendant groups was prepared from 9,9‐bis[4‐(4‐aminophenoxy)phenyl]xanthene with six commercially available aromatic tetracarboxylic dianhydrides in N,N‐dimethylacetamide (DMAc) via the poly(amic acid) precursors and subsequent thermal or chemical imidization. The intermediate poly(amic acid)s had inherent viscosities between 0.83 and 1.28 dL/g, could be cast from DMAc solutions and thermally converted into transparent, flexible, and tough poly(ether imide) films which were further characterized by X‐ray and mechanical analysis. All of the poly(ether imide)s were amorphous and their films exhibited tensile strengths of 89–108 MPa, elongations at break of 7–9%, and initial moduli of 2.12–2.65 GPa. Three poly(ether imide)s derived from 4,4′‐oxydiphthalic anhydride, 4,4′‐sulfonyldiphthalic anhydride, and 2,2‐bis(3,4‐dicarboxyphenyl))hexafluoropropane anhydride, respectively, exhibited excellent solubility in various solvents such as DMAc, N,N‐dimethylformamide, N‐methyl‐2‐pyrrolidinone, pyridine, and even in tetrahydrofuran at room temperature. The resulting poly(ether imide)s with glass transition temperatures between 286 and 335°C had initial decomposition temperatures above 500°C, 10% weight loss temperatures ranging from 551 to 575°C in nitrogen and 547 to 570°C in air, and char yields of 53–64% at 800°C in nitrogen. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
8.
Synthesis,characterization, and properties of low viscosity tetra‐functional epoxy resin N,N,N′,N′‐ tetraglycidyl‐3,3′‐diethyl‐4,4′‐diaminodiphenylmethane 下载免费PDF全文
Tetra‐functional epoxy resin N,N,N′,N′‐tetraglycidyl‐3,3′‐diethyl‐4,4′‐diaminodiphenylmethane (TGDEDDM) was synthesized and characterized. The viscosity of TGDEDDM at 25°C was 7.2 Pa·s, much lower than that of N,N,N′,N′‐tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM). DSC analysis revealed that the reactivity of TGDEDDM with curing agent 4,4′‐diamino diphenylsulfone (DDS) was significantly lower than that of TGDDM. Owing to its lower viscosity and reactivity, TGDEDDM/DDS exhibited a much wider processing temperature window compared to TGDDM/DDS. Trifluoroborane ethylamine complex (BF3‐MEA) was used to promote the curing of TGDEDDM/DDS to achieve a full cure, and the thermal and mechanical properties of the cured TGDEDDM were investigated and compared with those of the cured TGDDM. It transpired that, due to the introduction of ethyl groups, the heat resistance and flexural strength were reduced, while the modulus was enhanced. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40009. 相似文献
9.
Novel hybrid intercrosslinked networks of hydroxyl‐terminated polydimethylsiloxane‐modified epoxy and bismaleimide matrix systems have been developed. Epoxy systems modified with 5, 10, and 15 wt % of hydroxyl‐terminated polydimethylsiloxane (HTPDMS) were developed by using epoxy resin and hydroxyl‐terminated polydimethylsiloxane with γ‐aminopropyltriethoxysilane (γ‐APS) as compatibilizer and dibutyltindilaurate as catalyst. The reaction between hydroxyl‐terminated polydimethylsiloxane and epoxy resin was confirmed by IR spectral studies. The siliconized epoxy systems were further modified with 5, 10, and 15 wt % of bismaleimide (BMI). The matrices, in the form of castings, were characterized for their mechanical properties. Differential scanning calorimetry and thermogravimetric analysis of the matrix samples were also performed to determine the glass‐transition temperature and thermal‐degradation temperature of the systems. Data obtained from mechanical studies and thermal characterization indicate that the introduction of siloxane into epoxy improves the toughness and thermal stability of epoxy resin with reduction in strength and modulus values. Similarly the incorporation of bismaleimde into epoxy resin improved both tensile strength and thermal behavior of epoxy resin. However, the introduction of siloxane and bismaleimide into epoxy enhances both the mechanical and thermal properties according to their percentage content. Among the siliconized epoxy/bismaleimide intercrosslinked matrices, the epoxy matrix having 5% siloxane and 15% bismaleimide exhibited better mechanical and thermal properties than did matrices having other combinations. The resulting siliconized (5%) epoxy bismaleimide (15%) matrix can be used in the place of unmodified epoxy for the fabrication of aerospace and engineering composite components for better performance. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 38–46, 2001 相似文献
10.
Randomized carboxyl poly(2‐ethylhexyl acrylate) (A‐1) and randomized epoxy poly(2‐ethylhexyl acrylate) (B‐1) rubbers were synthesized in the form of liquid rubber by a solution polymerization technique. The liquid rubbers A‐1 and B‐1 were characterized by 1H NMR and IR spectroscopic analysis, non‐aqueous titration, viscosity measurements and gel permeation chromatography. The liquid rubbers A‐1 (M?n = 3900 g mol?1), B‐1 (M?n = 4100 g mol?1) and a (1:1) mixture of A‐1 and B‐1 were pre‐reacted with epoxy resin separately and the modified epoxy networks were made by curing with high temperature curing agent. The modified epoxy networks were evaluated by unnotched Izod impact testing. The morphology and toughening behaviour were analysed by scanning electron microscopy. Optimum properties were obtained with the mixture of A‐1 and B‐1. Copyright © 2003 Society of Chemical Industry 相似文献
11.
New aromatic diimide‐dicarboxylic acids having kinked and cranked structures, 2,2′‐bis(4‐trimellitimidophenoxy)biphenyl (2a) and 2,2′‐bis(4‐trimellitimidophenoxy)‐1,1′‐binaphthyl (2b), were synthesized by the reaction of trimellitic anhydride with 2,2′‐bis(4‐aminophenoxy)biphenyl (1a) and 2,2′‐bis(4‐aminophenoxy)‐1,1′‐binaphthyl (1b), respectively. Compounds 2a and 2b were characterized by FT‐IR and NMR spectroscopy and elemental analyses. Then, a series of novel aromatic poly(amide‐imide)s were prepared by the phosphorylation polycondensation of the synthesized monomers with various aromatic diamines. Owing to structural similarity, and a comparison of the characterization data, a model compound was synthesized by the reaction of 2b with aniline. The resulting polymers with inherent viscosities of 0.58–0.97 dl g?1 were obtained in high yield. The polymers were fully characterized by FT‐IR and NMR spectroscopy. The ultraviolet λmax values of the poly(amide‐imide)s were also determined. The polymers were readily soluble in polar aprotic solvents. They exhibited excellent thermal stabilities and had 10% weight loss at temperatures above 500 °C under a nitrogen atmosphere. Copyright © 2003 Society of Chemical Industry 相似文献
12.
Three series of isomeric poly(amide imide)s (series III, IV, and V) were synthesized by the direct polycondensation of 2,2′‐bis(4‐aminophenoxy)biphenyl (2,2′‐BAPB), 4,4′‐bis(4‐aminophenoxy)biphenyl (4,4′‐BAPB), or their equimolar mixture (2,2′‐BAPB/4,4′‐BAPB = 1/1) with 12 diimide diacids and with triphenyl phosphite and pyridine as condensing agents. A comparison of the physical properties of these three series was also made. The inherent viscosities of series III, IV, and V were 0.25–0.84, 0.25–1.52, and 0.43–1.30 dL g?1, respectively. Most of the series III polymers showed better solubility because of the non‐para structure, with the solubility order found to be III > V > IV. According to X‐ray diffraction patterns, the amorphous poly(amide imide)s had excellent solubility, whereas the crystalline polymers were less soluble. All the soluble polymers afforded transparent, flexible, and tough films, which had tensile strengths of 57–104 MPa, elongations at break of 3–20%, and initial moduli of 2.05–2.86 GPa. The glass‐transition temperatures (measured by differential scanning calorimetry) were highest for series IV, which contained the rigid 4,4′‐biphenyl units (254–299°C); copolymer series V ranked second (237–277°C), and series III, with crank 2,2′‐biphenyl structures, had the lowest values (227–268°C). The 10% weight‐loss temperatures (measured by thermogravimetric analysis) were close to one another, ranging from 527 to 574°C in nitrogen and from 472 to 543°C in air. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2763–2774, 2002 相似文献
13.
[2,6‐Bis(4‐hydroxybenzylidene)cyclohexanone] (HBC) was prepared by reacting cyclohexanone and p‐hydroxybenzaldehyde in the presence of acid catalyst. Acrylated derivative of HBC, 4‐{[‐3‐(4‐hydroxybenzylidene)‐2‐oxocyclohexylidene]methyl}phenyl acrylate (HBA), was prepared by reacting HBC with acryloyl chloride in the presence of triethylamine. Copolymers of HBA with styrene (S) and methyl acrylate (MA) of different feed compositions were carried out by solution polymerization technique by using benzoyl peroxide (BPO) under nitrogen atmosphere. All monomers and polymers were characterized by using IR and NMR techniques. Reactivity ratios of the monomers present in the polymer chain were evolved by using Finnman–Ross (FR), Kelen–Tudos (KT), and extended Kelen–Tudos (ex‐KT) methods. Average values of reactivity were achieved by the following three methods: r1 (S) = 2.36 ± 0.45 and r2 (HBA) = 0.8 ± 0.31 for poly(S‐co‐HBA); r1 = 1.62 ± 0.06 (MA); and r2 = 0.12 ± 0.07 (HBA) for poly(MA‐co‐HBA). The photocrosslinking property of the polymers was done by using UV absorption spectroscopic technique. The rate of photocrosslinking was enhanced compared to that of the homopolymers, when the HBA was copolymerized with S and MA. Thermal stability and molecular weights (Mw and Mn) were determined for the polymer samples. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2494–2503, 2004 相似文献
14.
A new diamine 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐hexahydro‐4,7‐methanoindan ( 3 ) was prepared through the nucleophilic displacement of 5,5′‐bis(4‐hydroxylphenyl)‐hexahydro‐4,7‐methanoindan ( 1 ) with p‐halonitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide (DMF), followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new polyamides were synthesized by the direct polycondensation of diamine 3 with various aromatic dicarboxylic acids. The polymers were obtained in quantitative yields with inherent viscosities of 0.76–1.02 dl g−1. All the polymers were soluble in aprotic dipolar solvents such as N,N‐dimethylacetamide (DMAc) and N‐methyl‐2‐pyrrolidone (NMP), and could be solution cast into transparent, flexible and tough films. The glass transition temperatures of the polyamides were in the range 245–282 °C; their 10% weight loss temperatures were above 468 °C in nitrogen and above 465 °C in air. © 2000 Society of Chemical Industry 相似文献
15.
A series of molecular‐weight‐controlled imide resins end‐capped with phenylethynyl groups were prepared through the polycondensation of a mixture of 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene and 1,3‐bis(4‐aminophenoxy)benzene with 4,4′‐oxydiphthalic anhydride in the presence of 4‐phenylethynylphthalic anhydride as an end‐capping agent. The effects of the resin chemical structures and molecular weights on their melt processability and thermal properties were systematically investigated. The experimental results demonstrated that the molecular‐weight‐controlled imide resins exhibited not only meltability and melt stability but also low melt viscosity and high fluidability at temperatures lower than 280°C. The molecular‐weight‐controlled imide resins could be thermally cured at 371°C to yield thermoset polyimides by polymer chain extension and crosslinking. The neat thermoset polyimides showed excellent thermal stability, with an initial thermal decomposition temperature of more than 500°C and high glass‐transition temperatures greater than 290°C, and good mechanical properties, with flexural strengths in the range of 140.1–163.6 MPa, flexural moduli of 3.0–3.6 GPa, tensile strengths of 60.7–93.8 MPa, and elongations at break as high as 14.7%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008 相似文献
16.
A series of new alternating aromatic poly(ester‐imide)s were prepared by the polycondensation of the preformed imide ring‐containing diacids, 2,2′‐bis(4‐trimellitimidophenoxy)biphenyl (2a) and 2,2′‐bis(4‐trimellitimidophenoxy)‐1,1′‐binaphthyl (2b) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A model compound (3) was also prepared by the reaction of 2b with phenol, its synthesis permitting an optimization of polymerization conditions. Poly(ester‐imides) were fully characterized by FTIR, UV‐vis and NMR spectroscopy. Both biphenylene‐ and binaphthylene‐based poly(ester‐imide)s exhibited excellent solubility in common organic solvents such as tetrahydrofuran, m‐cresol, pyridine and dichloromethane. However, binaphthylene‐based poly(ester‐imide)s were more soluble than those of biphenylene‐based polymers in highly polar organic solvents, including N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide and dimethyl sulfoxide. From differential scanning calorimetry thermograms, the polymers showed glass‐transition temperatures between 261 and 315 °C. Thermal behaviour of the polymers obtained was characterized by thermogravimetric analysis, and the 10 % weight loss temperatures of the poly(ester‐imide)s was in the range 449–491 °C in nitrogen. Furthermore, crystallinity of the polymers was estimated by means of wide‐angle X‐ray diffraction. The resultant poly(ester‐imide)s exhibited nearly an amorphous nature, except poly(ester‐imide)s derived from hydroquinone and 4,4′‐dihydroxybiphenyl. In general, polymers containing binaphthyl units showed higher thermal stability but lower crystallinity than polymers containing biphenyl units. Copyright © 2005 Society of Chemical Industry 相似文献
17.
A new facile and rapid polycondensation reaction of 4,4′‐(hexafluoroisopropylidene)‐N,N′‐bis(phthaloyl‐L ‐leucine) diacid chloride (1) with several aromatic diols such as phenol phthalein (2a), bis phenol‐A (2b), 4,4′‐hydroquinone (2c), 1,4‐dihydroxyanthraquinone (2d), 1,8‐dihydroxyanthraquinone (2e), 1,5‐dihydroxy naphthalene (2f), dihydroxy biphenyl (2g), and 2,4‐dihydroxyacetophenone (2h) was performed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as o‐cresol. The polymerization reactions proceeded rapidly, compared with the conventional solution polycondensation, and was completed within 10 min, producing a series of optically active poly(ester‐imide)s with quantitative yield and high inherent viscosity of 0.50–1.12 dL/g. All of the above polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of this optically active poly(ester‐imide)s are reported. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3003–3009, 2000 相似文献
18.
4‐(4′‐Aminophenyl)urazole (AmPU) was prepared from 4‐nitrobenzoic acid in six steps. The reaction of monomer AmPU with n‐isopropylisocyanate was performed in N,N‐dimethylacetamide solutions at different ratios, and the resulting disubstituted and trisubstituted urea derivatives were obtained in high yields and were finally used as models for polymerization reactions. The step‐growth polymerization reactions of AmPU with hexamethylene diisocyanate, isophorone diisocyanate, and toluene‐2,4‐diisocyanate were performed in N‐methylpyrrolidone solutions in the presence of pyridine as a catalyst. The resulting novel polyureas had inherent viscosities of 0.11–0.18 dL/g in dimethylformamide at 25°C. These polyureas were characterized with IR, 1H‐NMR, elemental analysis, and thermogravimetric analysis. Some physical properties and structural characterization of these novel polyureas are reported. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2692–2700, 2003 相似文献
19.
Relationships between the spherulite morphology and changes in hydrogen‐bonding interactions between the linear poly(ethylene oxide) (PEO) polymer and a crosslinking epoxy system (diglycidylether of bisphenol‐A resin with 4,4′‐diaminodiphenylsulfone) (DGEBA/DDS) before and after cure have been explored The hydrogen‐bonding interaction is more significant before cure because of the interactions between the ether group of PEO and the amine group of DDS. The interaction between PEO and epoxy/DDS becomes less in the cured network. The morphology of the PEO crystals is, in turn, affected by the contents and chemical structures (functional groups, molecular weights, crosslinks, etc) of crosslinking epoxy/DDS. PEO/poly(4‐vinyl phenol) (PVPh), a thermoplastic non‐curing miscible system with the hydrogen bonding between the ether group of PEO and the ? OH group of PVPh, is also compared. In comparison with the PEO/epoxy/DDS system, the spherulite morphology of PEO/PVPh becomes more extensively spread out, with the extents increasing with the PVPh contents in the PEO/PVPh blend. © 2001 Society of Chemical Industry 相似文献
20.
Peter Gregory Malcolm B. Huglin Mohamad K. H. Khorasani Pedro M. Sasia 《Polymer International》1988,20(1):1-8
Measured intrinsic viscosities ([η]) at several temperatures (T) within the interval 280–350 K have been found to increase with T for solutions of poly(phenyl acrylate) (PPA) in ethyl lactate. A decrease of [η] with T was observed for aqueous solutions of poly(ethylene oxide) (PEO) at several temperatures within the range 276–358 K. The results have been treated on the basis of eight excluded volume theories, among which the best consistency was afforded by those of Kurata-Stockmayer-Roig, Fixman, and Stockmayer (Padé). These yielded values of ?3.4 × 10?3 to ?4.7 × 10?3 deg?1 and ?0.9 × 10?3 to ?2.4 × 10?3 deg?1 for the temperatur coefficient of the unperturbed dimensions of PPA and PEO, respectively. The derived θ-temperatures were 287 K as the upper critical solution temperature for PPA in ethyl lactate and 365–382 K as the lower critical solution temperature for aqueous PEO. 相似文献