共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
首先介绍了静电纺丝制备纳米纤维的原理及其影响因素,然后归纳、总结了当前国内外静电纺丝制备纳米纤维的研究内容,并对今后的研究提出了建设. 相似文献
5.
6.
《高科技纤维与应用》2009,34(2):50-50
九州大学工学研究院与日本拜铃公司共同确立了用静电纺丝法制备二氧化硅纳米纤维的批量生产技术。采用该法可制成单纯二氧化硅或者含有二氧化硅的纳米纤维无纺布,纤维直径从数百nm至数μm。由于其化学和热稳定性好,比表面积又巨大,可望用于动物细胞培养载体和催化剂固定载体,以及薄型电池、高性能滤材、医疗卫生部件、防火服和医疗或生物实验等所用的超净室部件等。 相似文献
7.
8.
9.
《精细化工原料及中间体》2007,(6):36-36
日本宝翎公司采用静电纺丝法工艺制造纳米非织造材料。纳米纤维非织造材料视所用聚合物种类的不同而异,平均纤维直径约为0.1g/cm-0.3g/cm。静电纺丝所用聚合物种类范围广,有聚丙烯腈等有机溶剂系聚合物及聚乙烯醇等水系聚合物。该公司开展以聚丙烯腈为中心的研究,可用作过滤介质及电池隔膜等。 相似文献
10.
11.
纳米纤维束独特的微纳结构赋予其较大的比表面积、粗糙度和孔隙率等特性,在生物医学、催化、传感、过滤和吸附等领域具有广泛的应用前景。然而,常规制备纳米纤维的方法如自组装法、模板法和熔喷法等,很难制备出纤维束;传统的静电纺丝法所制备的纤维束的"束"尺寸基本在微米级以上,如何制备较小"束"尺寸的纳米纤维束是提高材料性能及应用开发的关键。文章首先介绍了近年来通过改进静电纺丝工艺和设备制备纳米纤维束的各种方法,进而总结了纳米纤维束的特点和应用,最后提出了纳米纤维束研究亟待解决的问题。 相似文献
12.
13.
采用静电纺丝技术制备了聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)/[Y(NO3)3+Al(NO3)3]复合纳米纤维,将复合纤维进行焙烧,得到了钇铝石榴石(ymium ahminium garnet,YAG)纳米纤维.用X射线衍射、扫描电子显微镜、热重-差热分析、Fourier变换红外光谱对PVP/[Y(NO3)3+Al(NO3)3]和YAG纤维样品进行了分析.结果表明:PVP/[Y(NO3)3+Al(NO3)3]复合纳米纤维为非晶态,经900℃焙烧10h后,获得了单相石榴石型的YAG立方晶系纳米纤维,空间群为Ia3d.所制备的PVP/[Y(NO3)3+Al(NO3)3]复合纤维表面光滑,平均直径约175ilnig YAG纳米纤维平均直径约75nm,长度大于100 μm.复合纤维在温度高于550℃时,质量保持恒定,总质量损失率为90.4%.初步讨论了YAG纳米纤维的形成机理. 相似文献
14.
静电纺丝制备聚丙烯腈纳米纤维及其预氧化 总被引:1,自引:0,他引:1
利用聚丙烯腈/二甲基甲酰胺纺丝溶液由静电纺丝制备了聚丙烯腈纳米纤维,纳米纤维的直径在220~760nm。随着聚合物溶液浓度和纺丝施加电压的升高,纳米纤维的直径变大。采用热分析和热重分析研究了纳米纤维的热性能,还用红外光谱对纳米纤维预氧化过程分子化学结构的变化进行了表征,结果表明,纳米纤维有一个很尖锐的放热峰,是聚丙烯腈均聚物典型的放热峰。随着预氧化温度的升高,纤维的内部分子结构发生了变化,表现在红外光谱上最突出的是C≡N在2243~2241cm^-1峰的降低,以及C—H在1684cm^-1峰的降低。 相似文献
15.
采用静电纺丝技术制备了PVP/[La(NO3)3+Al(NO3)3]复合纳米纤维,经过800 ℃焙烧8 h热处理后成功制备出大量的LaAlO3 纳米纤维.采用XRD、SEM、EDS、TEM、SAED、FTIR等测试技术对样品进行了系统地表征.结果表明,PVP/[La(NO3)3+Al(NO3)3]复合纳米纤维为非晶态,所制备的LaAlO3 纳米纤维为菱形晶系,空间群为R3m.PVP/[La(NO3)3+Al(NO3)3]复合纳米纤维表面光滑,平均直径约为180 nm;LaAlO3 纳米纤维的平均直径为80 nm,长度大于300 μm.LaAlO3 纳米纤维由纳米粒子构成,纳米粒子平均直径为15 nm,为多晶结构.对LaAlO3 纳米纤维的形成机理进行了讨论. 相似文献
16.
17.
本研究采用去离子水为溶剂,以蛋清蛋白与聚氧化乙烯(PEO)混合进行静电纺丝制备纳米纤维,采用扫描电镜表征了蛋清蛋白/PEO纳米纤维的形貌特征,探究了溶液质量分数以及纺丝工艺参数对蛋清蛋白/PEO纤维形貌的影响,并采用元素分析测试表征了纤维的元素组成成分。实验结果表明,蛋清在质量分数20%~80%之间表现出可纺性,蛋清质量分数50%的纺丝溶液进行纺丝,在纺丝电压25kV、纺丝距离16cm、挤出速度0.2mL/h的条件下,可纺性最好,制备的纤维无珠串平均直径为389nm,且纳米纤维中11.02%为氮元素,说明蛋清中的蛋白质成功转化为了纳米纤维。蛋清蛋白具有生物友好、可降解、来源广泛等优点,本研究成功实现了蛋清蛋白纳米纤维绿色制造,为其在生物医药、电池催化等领域的应用提供了基础。 相似文献
18.
为了获得具有更佳电化学性能与更持久耐用度的低成本合金催化剂,运用旋转静电纺丝法制备了铂钴合金(PtCo)纳米纤维。对金属盐(六氯铂酸、乙酸钴)及聚乙烯吡咯烷酮(PVP)溶液浓度、纺丝器旋转速度、电场强度等参数进行了优化,并借助扫描式电子显微镜(SEM)、X射线衍射仪(XRD)等分析了PtCo纳米纤维的组织与成分,确定了其最佳的制备工艺参数组合;利用循环伏安法测试了铂钴合金纳米纤维催化剂的电化学性能。结果表明,当PVP溶液质量分数为10%、酒精与去离子水质量比为1∶1、六氯铂酸与乙酸钴质量分数为2%、铂钴摩尔比为4∶1、纺丝器转速为1 600 r/min、供应电压为13 kV、收集距离为12 cm、针孔孔径为0.21 mm时,制备出的PtCo合金具有最佳的纳米级纤维型态,此时纤维丝的平均直径为76 nm,偏差值为14 nm;当铂钴摩尔比为5∶1时,PtCo纳米纤维的氢气吸附能力最强,总电荷值为3.031×10-3 C。 相似文献
19.
20.
静电纺丝制备有序纳米纤维的研究进展 总被引:5,自引:0,他引:5
2000年以来,静电纺丝技术成为高分子材料和纳米技术研究领域的一个新的热点。综述了近年来采用静电纺丝法制备有序纳米纤维的研究进展,并讨论了有序纳米纤维的潜在应用。 相似文献