首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Progressive Hulls for Intersection Applications   总被引:1,自引:0,他引:1  
Progressive meshes are an established tool for triangle mesh simplification. By suitably adapting the simplification process, progressive hulls can be generated which enclose the original mesh in gradually simpler, nested meshes. We couple progressive hulls with a selective refinement framework and use them in applications involving intersection queries on the mesh. We demonstrate that selectively refinable progressive hulls considerably speed up intersection queries by efficiently locating intersection points on the mesh. Concerning the progressive hull construction, we propose a new formula for assigning edge collapse priorities that significantly accelerates the simplification process, and enhance the existing algorithm with several conditions aimed at producing higher quality hulls. Using progressive hulls has the added advantage that they can be used instead of the enclosed object when a lower resolution of display can be tolerated, thus speeding up the rendering process. ACM CSS: I.3.3 Computer Graphics—Picture/Image Generation, I.3.5 Computer Graphics—Computational Geometry and Object Modeling, I.3.7 Computer Graphics—Three‐Dimensional Graphics and Realism  相似文献   

7.
Reanimating Faces in Images and Video   总被引:8,自引:0,他引:8  
  相似文献   

8.
Shadow Volumes on Programmable Graphics Hardware   总被引:3,自引:0,他引:3  
  相似文献   

9.
Deferred Splatting   总被引:2,自引:0,他引:2  
  相似文献   

10.
Exchanging Faces in Images   总被引:1,自引:0,他引:1  
  相似文献   

11.
Real-Time Caustics   总被引:1,自引:0,他引:1  
  相似文献   

12.
Depth and visual hulls are useful for quick reconstruction and rendering of a 3D object based on a number of reference views. However, for many scenes, especially multi‐object, these hulls may contain significant artifacts known as phantom geometry. In depth hulls the phantom geometry appears behind the scene objects in regions occluded from all the reference views. In visual hulls the phantom geometry may also appear in front of the objects because there is not enough information to unambiguously imply the object positions. In this work we identify which parts of the depth and visual hull might constitute phantom geometry. We define the notion of reduced depth hull and reduced visual hull as the parts of the corresponding hull that are phantom‐free. We analyze the role of the depth information in identification of the phantom geometry. Based on this, we provide an algorithm for rendering the reduced depth hull at interactive frame‐rates and suggest an approach for rendering the reduced visual hull. The rendering algorithms take advantage of modern GPU programming techniques. Our techniques bypass explicit reconstruction of the hulls, rendering the reduced depth or visual hull directly from the reference views.  相似文献   

13.
We present the 3D Video Recorder, a system capable of recording, processing, and playing three‐dimensional video from multiple points of view. We first record 2D video streams from several synchronized digital video cameras and store pre‐processed images to disk. An off‐line processing stage converts these images into a time‐varying 3D hierarchical point‐based data structure and stores this 3D video to disk. We show how we can trade‐off 3D video quality with processing performance and devise efficient compression and coding schemes for our novel 3D video representation. A typical sequence is encoded at less than 7 Mbps at a frame rate of 8.5 frames per second. The 3D video player decodes and renders 3D videos from hard‐disk in real‐time, providing interaction features known from common video cassette recorders, like variable‐speed forward and reverse, and slow motion. 3D video playback can be enhanced with novel 3D video effects such as freeze‐and‐rotate and arbitrary scaling. The player builds upon point‐based rendering techniques and is thus capable of rendering high‐quality images in real‐time. Finally, we demonstrate the 3D Video Recorder on multiple real‐life video sequences. ACM CSS: I.3.2 Computer Graphics—Graphics Systems, I.3.5 Computer Graphics—Computational Geometry and Object Modelling, I.3.7 Computer Graphics—Three‐Dimensional Graphics and Realism  相似文献   

14.
15.
16.
Multi-Resolution Rendering of Complex Animated Scenes   总被引:5,自引:0,他引:5  
  相似文献   

17.
18.
Free-form sketching with variational implicit surfaces   总被引:12,自引:0,他引:12  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号