共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
等通道转角挤压是制备块体超细品材料的一种重要方法,模具通道内角是影响晶粒细化效果的关键要素.采用刚塑性有限元法对通道内角ψ为锐角(60°≤ψ≤90°)时的挤压过程进行分析,获得了试样在挤压过程金属的流动和变形规律.研究结果表明:在无摩擦的理想状况下,随ψ减小,金属的流动趋于均匀,角部间隙减小,试样整体变形效果增强,当ψ=60°时,角部间隙完全消失并形成变形死区;同时,接触摩擦和模具外圆角ψ对挤压效果的影响随ψ减小而增强;采用适当大小的ψ不仅可以消除尖角锐角模具所产生的缺陷,提高金属流动和变形的均匀性,而且可显著降低所需的变形力. 相似文献
3.
4.
5.
等通道角挤压(ECAP)工艺可以积累足够的变形量来制备大块超细晶材料.通过对模具转角和模具中心角半径对挤压过程影响的有限元分析,得出了等通道弯曲角挤压过程的变形机理,得到了优化的模具几何尺寸和工艺参数,为等径弯曲角挤压模具设计提供了可靠的理论数据参考.为实现常温下块体金属材料的反复挤出,在不改变挤压件横截面几何形状的基... 相似文献
6.
7.
模具外角对等通道转角挤压(ECAE)变形过程影响较大,文章利用有限元软件(MSC.Marc)模拟研究了模具外角对ECAE过程中等效应变、变形机理的影响。模拟结果表明,模具外角Ψ>0°~30°的范围内,等效应变的分布较为均匀;当模具外角Ψ>30°时,等效应变的分布越来越不均匀;当模具外角Ψ=0°~90°范围内逐渐增大时,试样的变形机理由单一剪切变形逐渐变为剪切变形与弯曲变形相结合的复合变形行为。为了验证模拟结果,对大尺寸纯铝进行了等通道转角挤压实验(模具内角Ф=90°,模具外角Ψ=30°),纯铝实验应变值的分布与大小和模拟应变值的分布与大小近似吻合。由光学显微组织可知,经ECAE挤压一次后,变形试样组织较为均匀,晶粒得到一定程度细化。 相似文献
8.
9.
10.
11.
等通道转角挤压工艺有限元分析 总被引:1,自引:0,他引:1
用SOLIDWORKS建立等通道转角挤压(ECAP)的几何模型,用有限元软件DEFORM-3D划不同摩擦系数、不同冲头速度时的挤压过程进行了模拟、获得了相应的应变场以及载荷行程曲线,得到了模具的应力分布。模拟结果表明:变形区域集中在两个通道的相交部分;等效应变速率与冲头的运动速度成正比:摩擦系数对应变的分布和变形载荷有较大影响:在一定的摩擦条件下,完成ECAP所需的变形抗力与材料流动应力成线性关系;当通道表面粗糙度Ra为1.6μm时,模具危险点工作应力不会超过变形体流动应力的4.5倍。 相似文献
12.
13.
模具外角和内角对等通道角挤压的影响的有限元分析 总被引:1,自引:0,他引:1
等通道角挤压(ECAE)工艺受模具外角和模具内角的影响较大,为此利用有限元分析方法对该工艺过程进行了模拟.结果表明:模具外角主要影响等效应变分布的均匀性,对等效应变值的大小影响不大;模具内角主要影响等效应变值的大小,对等效应变分布的均匀性影响较模具外角小;随着模具外角的逐渐增大,模具拐角变形区域逐渐变大,变形机理由纯剪切变形变为剪切变形和弯曲变形相结合的复合变形;随着模具内角的逐渐增大,模具拐角变形区域基本保持不变,变形机理由纯剪切变形变为弯曲变形;模具内角较模具外角对加载载荷的影响更为显著. 相似文献
14.
AZ91镁合金等通道转角挤压有限元分析 总被引:1,自引:0,他引:1
以AZ91镁合金为研究对象,建立了等通道转角挤压三维模型。运用DEFORM-3D有限元软件进行了模拟,分析了温度和摩擦条件对AZ91等通道转角挤压过程中的等效应变、挤压力的影响。结果表明:试样在两通道转角处的变形较剧烈;随着温度的升高,等通道转角挤压所需要的最大挤压力变小;摩擦系数越大,等效应变变化梯度越大,塑性变形均匀性越低。 相似文献
15.
采用有限元技术模拟6061铝合金在室温下等通道转角挤压(ECAP)过程,分析了模具圆心角、摩擦因数对ECAP过程的影响。结果表明,圆心角减小,试样等效应变值增大且较为均匀,但是挤压载荷增加;摩擦对载荷的影响明显。单道次挤压后,试样变形不均匀。 相似文献
16.
Jaimyun Jung Seung Chae Yoon Hyun-Joon Jun Hyoung Seop Kim 《Journal of Materials Engineering and Performance》2013,22(11):3222-3227
Equal channel angular pressing (ECAP) is the most promising and interesting process for refining the grain size to an ultrafine grain or nanosize by imposing severe plastic deformation into the workpiece and repeating the process while maintaining the original cross-section of the workpiece. In this paper, we simulated the batch type ECAP and the continuous type equal channel multi-angular pressing (ECMAP), which can impose large deformation by repeating the shear deformation, using the finite element method and investigated the similarity and difference of the two processes. In particular, modified die design of the continuous type ECMAP was proposed for strain uniformity. 相似文献
17.
为了优化室温下等通道转角挤压纯钛工件的几何形状,采用三维有限元软件模拟了纯钛工件的变形行为。通过对比分析工件形状和尺寸对损伤因子、挤压力以及剪切带处应变速率分布等参数的影响,获得了工件最佳几何形状。仿真结果表明,方条形工件的损伤因子大于圆棒型工件,且高于纯钛材料的临界损伤因子,表明方条形工件不利于变形,易产生表面裂纹。3D模拟结果表明,直径为15 mm的圆棒型工件具有最小的损伤因子,适中的挤压载荷以及相对均匀的应变分布。依据仿真结果提供的最佳工件,即直径为15 mm的圆棒型工件,室温下成功挤压出直径15 mm的纯钛圆棒。挤压后样品截面上硬度分布均匀,与3D仿真所预示的均匀应变分布相一致。 相似文献