首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
分析了用规则表达式表示约束的原因和目标,研究了规则表达式表示的约束在序列模式挖掘中的应用思想,利用对比的方法对SPIRIT系列算法进行研究,并介绍了算法的剪枝过程。  相似文献   

2.
一种挖掘压缩序列模式的有效算法   总被引:1,自引:0,他引:1       下载免费PDF全文
从序列数据库中挖掘频繁序列模式是数据挖掘领域的一个中心研究主题,而且该领域已经提出和研究了各种有效的序列模式挖掘算法.由于在挖掘过程中会产生大量的频繁序列模式,最近许多研究者已经不再聚焦于序列模式挖掘算法的效率,而更关注于如何让用户更容易地理解序列模式的结果集.受压缩频繁项集思想的启发,提出了一种CFSP(compressing frequent sequential patterns)算法,其可挖掘出少量有代表性的序列模式来表达全部频繁序列模式的信息,并且清除了大量的冗余序列模式.CFSP是一种two-steps的算法:在第1步,其获得了全部闭序列模式作为有代表性序列模式的候选集,与此同时还得到大多数的有代表性模式;在第2步,该算法只花费了少量的时间去发现剩余的有代表性序列模式.一个采用真实数据集与模拟数据集的实验研究也证明了CFSP算法具有高效性.  相似文献   

3.
基于关联规则和序列模式挖掘的客户行为模型   总被引:1,自引:0,他引:1  
首先介绍了关联规则和序列模式,并在证券交易历史数据仓库中使用Apriori算法和Aprioriall算法进行挖掘,然后用挖掘结果构造了证券网上交易的客户行为模型.最后,从该模型的Markov链转移概率矩阵出发实现了网上交易行情自动推送机制,有效地提高客户网上交易实时行情的响应速度.  相似文献   

4.
使用序列模式精简基挖掘序列模式   总被引:3,自引:1,他引:3  
传统的序列模式挖掘方法在挖掘由短的频繁序列模式组成的数据库时有良好的性能.但在挖掘长的序列模式或支持度阈值很低时,这些方法可能遇到固有的困难,因为产生的频繁序列模式的数量经常太大.在许多情况下,用户可能只需要那些覆盖许多短模式的长模式.此外,在很多应用中,只要得到产生的频繁序列模式的近似支持度就已足够,而不需要它们的精确支持度.介绍了能将误差控制在确定范围内的频繁序列模式精简基的概念,并开发了一个挖掘这种序列模式精简基的算法.实验结果显示计算频繁序列模式精简基是很有前途的.  相似文献   

5.
作为教育信息化的重要组成部分,高校教学管理系统中收集了大量的教学信息,但大多没有得到很好的挖掘和研究,所以数据挖掘在高校教学管理系统中的应用具有现实意义。该文介绍了数据挖掘技术的基本原理和解决问题的方法,并讨论了一种将数据挖掘技术与高校教学管理系统相结合的方法,提高了高校教学管理的工作效率,实现了教学资源安排的合理性,在高校教学信息化建设方面做出了新的探索。  相似文献   

6.
时间序列模糊关联规则的挖掘   总被引:3,自引:0,他引:3  
对于许多复杂系统产生的时间序列,研究序列的局部行为和局部关联特征往往比原来的研究系统全局性模型具有明显的优势。为研究时间序列内部或时间序列间局部形态的关联特征,文章借助模糊集来软化时间序列属性论域的划分边界从而研究时间序列局部形态的模糊关联规则、规则可信度和规则的评价方法。实际算例显示了算法的有效性。  相似文献   

7.
栾东庆  徐素琴 《微机发展》2003,13(8):83-86,89
多维序列模式挖掘是在序列模式挖掘的基础上发展起来的,文章阐述了有关概念,介绍了两种序列模式挖掘算法:GSP算法和PrefixSpan算法,在对两类算法进行比较分析的基础上形成了挖掘多维序列模式的UniSeq算法、Dim-Seq算法和Seq-Dim算法。针对不同维度的模式,各种算法特点不同。  相似文献   

8.
序列模式挖掘能够在一个序列数据集里发现频繁出现的序列。序列模式挖掘是一种重要的数据挖掘问题,涉及到的应用面很广,比如客户购物模式分析或者互连网访问模式分析。它还涉及到时序过程分析,比如科学实验、自然灾难事件、疾病防治和DNA序列分析等等。然而,序列模式挖掘必须产生并且检验大量的、数目成倍增长的模式,这使得序列模式挖掘非常具有挑战性。  相似文献   

9.
基于互关联后继树的时序模式挖掘   总被引:1,自引:0,他引:1  
时间序列是现实生活中常见的数据形式之一.在时间序列中发现频繁模式是分析时间序列变化规律的一项重要任务本文提出一种基于互关联后继树模型的时间序列频繁模式发现方法.该方法依据序列重要点进行分段,引人相对斜率值并结合领域知识将序列符号化,在此基础上提出一种互关联后继树的新型挖掘算法,实现了时序频繁模式的发现理论与实验表明,该方法简单、直观、高效,具有实用价值.  相似文献   

10.
闭合序列模式挖掘算法   总被引:3,自引:1,他引:2  
提出了一种新的挖掘闭合序列模式的PosD算法,该算法利用位置数据保存数据项的顺序信息,并基于位置数据列表保存数据项的顺序关系提出了两种修剪方法:逆向超模式和相同位置数据。为了确保栅格存储的正确性和简洁性,另外还针对一些特殊情况做处理。试验结果表明,在中大型数据库和小支持度的情况下谊算法比CloSpan算法更有效。  相似文献   

11.
提出了一种基于H-tree的多维序列模式挖掘算法,首先在序列信息中挖掘序列模式,然后针对每个序列模式,根据包含此模式的所有元组中的多维信息构造H-tree树,挖掘出相应的多维模式,从而得到了多维序列模式。该算法将多维分析方法与序列模式挖掘算法有效地结合在一起,当维度较高时具有较高的性能。  相似文献   

12.
Sequential Pattern Mining in Multi-Databases via Multiple Alignment   总被引:2,自引:0,他引:2  
To efficiently find global patterns from a multi-database, information in each local database must first be mined and summarized at the local level. Then only the summarized information is forwarded to the global mining process. However, conventional sequential pattern mining methods based on support cannot summarize the local information and is ineffective for global pattern mining from multiple data sources. In this paper, we present an alternative local mining approach for finding sequential patterns in the local databases of a multi-database. We propose the theme of approximate sequential pattern mining roughly defined as identifying patterns approximately shared by many sequences. Approximate sequential patterns can effectively summerize and represent the local databases by identifying the underlying trends in the data. We present a novel algorithm, ApproxMAP, to mine approximate sequential patterns, called consensus patterns, from large sequence databases in two steps. First, sequences are clustered by similarity. Then, consensus patterns are mined directly from each cluster through multiple alignment. We conduct an extensive and systematic performance study over synthetic and real data. The results demonstrate that ApproxMAP is effective and scalable in mining large sequences databases with long patterns. Hence, ApproxMAP can efficiently summarize a local database and reduce the cost for global mining. Furthremore, we present an elegant and uniform model to identify both high vote sequential patterns and exceptional sequential patterns from the collection of these consensus patterns from each local databases.  相似文献   

13.
提出一种新的闭合序列模式挖掘算法,该算法利用位置数据保存数据项的序列信息,并提出两种修剪方法:逆向超模式和相同位置数据。为了确保格存储的正确性和简洁性,另外还针对一些特殊情况做处理。试验结果表明,在中大型数据库和小支持度的情况下,该算法比CloSpan算法[8]更有效。  相似文献   

14.
现有的序列模式算法大都需要频繁访问数据库,效率低.本文提出了一种只需访问数据库一次的基于概念的序列模式算法SPC(Sequential Pattern Algorithm Based on Concept).它利用概念来保存信息,通过划分搜索空间得到概念,并在保证数据挖掘结果正确的前提下采用项有序,合并等价子空间和舍弃无效子空间等手段减少搜索空间数量,提高了效率.  相似文献   

15.
在加权序列模式挖掘中,基于候选码生成-测试方法的MWSP是目前应用性最好的算法之一,然而在挖掘过程中容易出现候选组合爆炸的情况,为此文章提出了一种高效的加权序列模式挖掘算法(PWSM)。PWSM算法引入k-最小加权支持数概念并利用前缀投影数据库原理有效地避免了候选组合爆炸的发生,并且在挖掘的过程中充分利用最小加权支持数,再次对算法进行优化。实验表明,该算法较MWSP算法能更加有效地从序列数据库中挖掘加权序列模式。  相似文献   

16.
随着计算机的发展,网络安全在现代社会中扮演着越来越关键的角色,并成为比较严重的问题。该文详细分析了基于序列模式的数据挖掘技术,并且在挖掘过程中提出了一种新的序列模式算法。  相似文献   

17.
序列模式挖掘是数据挖掘的一个重要问题.传统的序列模式仅能揭示频繁出现的项目以及出现的顺序,但不能揭示在前续项目出现的情况下,后续项目出现的时间.在本文中,引入一种新的多时间粒度序列模式,模式中相邻项目之间的转换时间采用从原数据集中导出的、多时间粒度下的最小有界时间区间和平均时间标注.建立了多时间粒度序列模式挖掘模型,提出了一种新的多时间序列模式挖掘算法MG-PrefixSpan.实验表明,算法是有效的.  相似文献   

18.
对入侵检测和数据挖掘从定义和分类等各方面等进行了基本介绍,提出了一个基于数据挖掘的入侵检测系统的总体框架,其整个系统分为训练阶段和测试阶段,对其中各个模块进行基本的功能分析。为了提高数据挖掘的效率,可以将序列模式挖掘引入该入侵检测系统中。将关联规则算法和序列模式挖掘算法同时使用,增加挖掘的粒度。对序列模式挖掘的算法进行了具体分析,并通过具体的实例来说明引入序列模式挖掘能更好地提高数据挖掘的效率。  相似文献   

19.
目前,不少审计系统引入数据挖掘技术以增强系统功能。其中,大多数都是基于关联规则技术。关联规则技术无法挖掘出具有时序特征的规则,而序列模式挖掘刚好能解决这方面的问题。该文讲述一种基于序列模式挖掘技术的审计系统的设计与实现。该审计系统审计的数据源自身份验证、入侵检测、访问控制等模块产生的事件记录,并通过序列模式挖掘技术来分析这些记录,从中提取规则实现审计,并介绍了如何解决选取数据、预处理数据、选取挖掘算法等实际问题的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号