首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
试验从连续流发酵产氢反应器(ZL92114474.1)中分离筛选出一株高效纤维素降解产氢细菌Clostridium sp.X9.X9利用微晶纤维素(MC)作为发酵产氢底物,得到最大单位体积产氢量(YH2)、比产氢率(YH2/s)和纤维素降解率分别为780 mL H2/L-culture、5.1 mmol H2/g-cellulose和69.6%.采用酸、碱、氨水和酸化汽爆方式预处理玉米秸秆,结果表明,酸化汽爆方式可以获得最佳的预处理效果.X9利用酸化汽爆玉米秸秆(cSES)发酵产氢的YH2、YH2/8和纤维素降解率分别达到730 ml H2/L-culture、4.3 mmol H2/g-cellulose和64%.这说明新菌种X9在利用玉米秸秆类生物质纤维素发酵产氢方面具有很好的应用潜力.  相似文献   

2.
从连续流发酵产氢反应器(ZL9211474.1)中分离筛选出一株高效纤维素降解产氢细菌Clostridium.sp.X9,X9利用微晶纤维素(MC)作为发酵产氢底物,得到最大单位体积产氢量(YH2)、比产氢率(YH2/s)和纤维素降解率分别为780mL H2/L-culture、5.1mmol H2/g-cellulose和69.6%.采用酸、碱、氨水和酸化汽曝4种方式预处理玉米秸秆,结果表明,酸化汽曝方式可以获得最佳的预处理效果.X9利用酸化汽曝预处理的玉米秸秆发酵产氢的YH2、YH2/s和纤维素降解率分别达到730mL H2/L-cuhllre、4.3mmol H2/g-ceulllose和64.0%.这说明新菌种X9在利用玉米秸秆类生物质纤维素发酵产氢方面具有很好的应用潜力.  相似文献   

3.
玉米秸秆预处理对厌氧发酵制氢影响的研究   总被引:3,自引:0,他引:3  
为提高玉米秸秆的产氢能力,实验研究了蒸汽爆破预处理、硫酸预处理、氢氧化钠预处理、盐酸预处理和酸化(碱化)气爆预处理5种预处理方法对玉米秸秆发酵产氢能力的影响。结果表明,预处理可以将秸秆中相当一部分纤维素和半纤维素水解生成还原糖,其中质量分数为0.8%的H2SO4酸化汽爆预处理对秸秆的水解效果最好。在固-液比1∶10、H2SO4质量分数0.8%、保持微沸状态30min的处理条件下,秸秆的糖含量达到最大值24.57%,最大氢气产量为141mL/g。  相似文献   

4.
王震  吕喆  杜济良 《太阳能学报》2016,37(3):542-545
为阐明木质纤维素原料乙醇发酵残留物产甲烷的能力,以汽爆玉米秸秆为原料进行高底物浓度同步糖化发酵(SSF)产乙醇,并将乙醇发酵残留物、发酵残留物上清及固体部分分别进行产甲烷潜力实验。研究结果表明,汽爆玉米秸秆同步糖化发酵底物浓度达到30%(w/w),乙醇浓度为48.9g/L。发酵残留物产甲烷潜力为46mL CH_4/g底物,上清部分产甲烷潜力为12mL CH_4/g底物,固体部分产甲烷潜力达到286mL CH_4/g底物,从而证明高底物浓度汽爆玉米秸秆乙醇发酵残留物具有较好的产甲烷潜力。  相似文献   

5.
为了提高玉米秸秆与牛粪混合发酵的产气效率,文章对黑曲霉AS0006预处理后的玉米秸秆进行了研究,考察了不同预处理时间的玉米秸秆在混合厌氧发酵过程中的日产气量、累积产气量、TS和VS去除率以及木质纤维素去除率等发酵特性的变化情况。研究结果表明:黑曲霉AS0006对木质纤维素有较强的降解能力,玉米秸秆经黑曲霉AS0006预处理28 d后,纤维素、半纤维素和木质素的降解率分别为26.86%,11.93%和25.09%;经过黑曲霉AS0006预处理的玉米秸秆与牛粪混合发酵可以提高日产气量并缩短厌氧发酵周期,其中,预处理21 d后的玉米秸秆的产气高峰最大,为523.4 mL/d;经过黑曲霉AS0006预处理的玉米秸秆与牛粪混合发酵后, TS和VS去除率以及木质纤维素去除率均比未经预处理的玉米秸秆高。  相似文献   

6.
秸秆发酵产氢的碱性预处理方法研究   总被引:14,自引:0,他引:14  
以麦秆、稻草和滤纸为发酵底料,以厌氧活性污泥为接种物,采用不同的预处理方法去除木质素并提高纤维素的降解率,从而提高其发酵产氢能力。试验表明对于相同的底料,经过NaOH预处理和纤维素酶解后的还原糖含量、总产气量、总产氢量和氢气浓度都要高于经过氨水预处理的底料,而未经过预处理的底料发酵产氢能力最差。利用10g经过NaOH预处理的麦秆和稻草,经纤维素酶解后在发酵产氢过程中的降解率分别为23.2%和12.5%,总产氢量分别为363.3mL和254.9mL,发酵产气中氢气浓度分别为23.8%和29.1%。发酵液相中主要产物为乙醇、乙酸和丁酸。  相似文献   

7.
农作物秸秆生物法降解的研究   总被引:33,自引:1,他引:33  
利用白腐菌对玉米秸秆中木质纤维素进行生物降解,研究木质纤维素的变化规律,确定了白腐菌对玉米秸秆进行生物降解预处理的适宜条件,降解周期为14d,降解预处理的固液比例为1:9,为秸秆快速产沼气做准备。  相似文献   

8.
预处理温度对活性污泥发酵产氢特性的影响   总被引:1,自引:0,他引:1  
为寻求适宜的种泥热处理方法,利用摇瓶发酵实验,考察了城市污水处理厂好氧活性污泥分别经65、80、95、110℃热处理30min后,其利用葡萄糖发酵产氢的特性。结果表明:在初始pH=7.0、葡萄糖浓度10g/L、接种量2gMLVSS/L条件下,35℃培养72h,经65℃和95℃处理的种泥表现出较好的发酵产氢性能,其葡萄糖的氢气转化率分别达到1.08和1.11mol/mol,污泥的比产氢率分别为8.36和9.05mmol/gMLVSS;经65℃预处理的种泥发酵体系,表现为丁酸型发酵,其葡萄糖降解率和最大产氢速率分别高达82%和11.29mL/h,而经95℃预处理的种泥发酵体系则呈现混合酸发酵特征,其葡萄糖转化率和最大产氢速率分别仅为76%和4.45mL/h。  相似文献   

9.
厌氧高效产氢细菌的筛选及其耐酸性研究   总被引:34,自引:2,他引:34  
采用厌氧Hungate技术 ,从生物制氢反应器厌氧活性污泥中分离到 18株发酵产氢细菌 ,并从中优选出 1株高效产氢细菌B4 9。通过间歇试验 ,B4 9获得最大比产氢速率QH2 为 2 5 .0mmol/g·h ,单位体积产氢量YH2 为 1813.8mL/L ,氢气含量为 6 4 .15 %。B4 9菌株为乙醇型发酵产氢细菌 ,具有良好的耐酸性 ,在 pH3.3仍能生长。发酵产氢和细菌生长的最适 pH值约为 3.9~ 4 .2。  相似文献   

10.
发酵条件对发酵产氢细菌B49产氢的影响   总被引:7,自引:0,他引:7  
采用间歇发酵实验,研究了葡萄糖浓度、接种量、温度、氮源、不同有机底物对发酵产氢产酸细菌新菌种IM9(AF481148 in EMBL)生物产氢的影响。结果表明,接种量影响IM9的产氢;IM9生长和产氢适宜温度均为35℃;IM9不能利用无机氮源,而有机氮是IM9生长、产氢的适宜氮源;葡萄糖是IM9发酵产氢的最适宜底物,当浓度为10g/L时,IM9的葡萄糖利用率为100%,氢气得率为1.69molH2/mol glucose;此外,IM9可利用小麦、大豆、玉米、土豆及糖蜜废水和啤酒废水产氢,其中利用糖蜜废水、啤酒废水产氢分别为137.9ml H2/g COD和49.9ml H2/g COD。  相似文献   

11.
Biohydrogen production from cellulose by a bacterial co-culture is a potentially promising approach for producing bioenergy from a low cost substrate. The use of a cellulolytic bacterium, Cellulomonas fimi, permits cellulose conversion and the in situ production of substrate for growth and hydrogen production by the photosynthetic bacterium Rhodopseudomonas palustris. Response surface methodology (RSM) with a Box-Behnken design (BBD) was used to examine variations in the key parameters: substrate (cellulose) concentration, yeast extract concentration and the microorganism ratio (Rps. palustris/C. fimi). For the co-culture of R. palustris and C. fimi the highest hydrogen production (44 mmol H2/L) was achieved at the highest substrate concentration (5 g/L); however, the highest hydrogen yield (3.84 mol H2/mol glucose equivalent) was observed at the lowest cellulose concentration and highest microorganism ratio. High COD removal efficiencies, over 70%, were achieved over a wide range of conditions and were positively affected by the concentration of yeast extract.  相似文献   

12.
Peanut shell, mixed with sodium carboxymethyl-cellulose, was gasified at a temperature of 450°C and a pressure range from 24 to 27 MPa with the presence of different catalysts, including K2CO3, ZnCl2 and Raney-Ni. The experimental results show that different catalysts have greatly different effects on the reaction. Gasification efficiency (GE), hydrogen gasification efficiency (GHE), carbon gasification efficiency (GCE), yield of hydrogen production and potential yield of hydrogen production are applied to describe the catalytic efficiency. From the result of gaseous components, ZnCl2 has the highest hydrogen selectivity, K2CO3 is lower, and Raney-Ni is the lowest, but Raney-Ni is the most favorable to gasify biomass among the three catalysts, and its G E, G HE, G CE reach 126.84%, 185.71%, 94.24%, respectively. As expected, hydrogen selectivity increased and CH4 reduced rapidly when the mixture of ZnCl2 and Raney-Ni is used under the same condition. The optimization mixture appeared when 0.2 g of ZnCl2 was added to 1 g of Raney-Ni, 43.56 g·kg−1 of hydrogen production was obtained. In addition, the catalytic mechanisms of different catalysts were analyzed, and the possible reaction pathway was brought forward, which helped to explain the experiment phenomena and results correctly. __________ Translated from Journal of Xi’an Jiaotong University, 2006, 40(9): 1 263–1 267 [译自: 西安交通大学学报]  相似文献   

13.
The present study investigated hydrogen production potential of novel marine Clostridium amygdalinum strain C9 isolated from oil water mixtures. Batch fermentations were carried out to determine the optimal conditions for the maximum hydrogen production on xylan, xylose, arabinose and starch. Maximum hydrogen production was pH and substrate dependant. The strain C9 favored optimum pH 7.5 (40 mmol H2/g xylan) from xylan, pH 7.5–8.5 from xylose (2.2–2.5 mol H2/mol xylose), pH 8.5 from arabinose (1.78 mol H2/mol arabinose) and pH 7.5 from starch (390 ml H2/g starch). But the strain C9 exhibited mixed type fermentation was exhibited during xylose fermentation. NaCl is required for the growth and hydrogen production. Distribution of volatile fatty acids was initial pH dependant and substrate dependant. Optimum NaCl requirement for maximum hydrogen production is substrate dependant (10 g NaCl/L for xylose and arabinose, and 7.5 g NaCl/L for xylan and starch).  相似文献   

14.
Batch tests were conducted to evaluate the enhancement of hydrogen/ethanol (EtOH) productivity using cow dung microflora to ferment α-cellulose and saccharification products (glucose and xylose). Hydrogen/ethanol production was evaluated based on hydrogen/ethanol yields (HY/EY) under 55 °C at various initial pH conditions (5.5–9.0). Our test results indicate that cow dung sludge is a good mixed natural-microflora seed source for producing biohydrogen/ethanol from cellulose and xylose. The heat-pretreatment, commonly used to produce hydrogen more efficiently from hexose, applied to mixed anaerobic cultures did not help cow dung culture convert cellulose and xylose into hydrogen/ethanol. Instead of heat-pretreatment, the mixed culture received enrichments cultivated at 55 °C for 4 days. Positive results were observed: hydrogen/ethanol production from fermenting cellulose and xylose was effectively enhanced at increases of 4.8 (ethanol) to 8 (hydrogen) and 2.4 (ethanol) to 15.6 (hydrogen) folds, respectively. In which, the ethanol concentration produced from xylose reached 4–4.4 g/L, an output comparable to that of using heat-treated sewage sludge and better than that (1.25–3 g/L) using pure cultures. Our test results show that for the enriched cultures the initial cultivation pH can affect hydrogen/ethanol production including HY, EY and liquid fermentation product concentration and distribution. These results were also concurred using a denaturing gradient gel electrophoresis analysis saying that both cultivation pH and substrate can affect the enriched cow dung culture microbial communities. The enriched cow dung culture had an optimal initial cultivation pH range of 7.6–8.0 with peak HY/EY values of 2.8 mmol-H2/g-cellulose, 5.8 mmol-EtOH/g-cellulose, 0.3 mol-H2/mol-xylose and 1 mol-EtOH/mol-xylose. However, a pH change of 0.5 units from the optimal values reduced hydrogen/ethanol production efficiency by 20%. Strategies based on the experimental results for optimal hydrogen/ethanol production from cellulose and xylose using cow dung microflora are proposed.  相似文献   

15.
A mesophilic alkaline tolerant fermentative microbe was isolated from estuarine sediment samples and designated as Clostridium butyricum TM-9A, based on 16S rRNA gene sequence. Batch experiments were conducted for investigation of TM-9A strain for its growth and hydrogen productivity from glucose, in an iron containing basal solution supplemented with yeast extract as organic nitrogen source. Hydrogen production started to evolve when cell growth entered exponential phase and reached maximum production rate at late exponential phase. Maximum hydrogen production was observed at 37 °C, initial pH of 8.0 in the presence of 1% glucose. Optimization of process parameters resulted in increase in hydrogen yield from 1.64 to 2.67 mol of H2/mol glucose. Molar yield of H2 increased further from 2.67 to 3.1 mol of H2/mol of glucose with the decrease in hydrogen partial pressure, obtained by lowering the total pressure in the head space of the batch reactor. Acetate and butyrate were the measure volatile fatty acids generated during hydrogen fermentation. TM-9A strain produced hydrogen efficiently from a range of pentose and hexose sugars including di-, tri and poly-saccharides like; xylose, ribose, glucose, rhamnose, galactose, fructose, mannose, sucrose, arabinose, raffinose, cellulose, cellobiose and starch.  相似文献   

16.
The production of hydrogen using microorganisms is an environment-friendly and less energy-intensive way of producing hydrogen. Rhodoplanes piscinae is a photosynthetic bacterium with the ability of hydrogen production under photosynthetic conditions. In this study, a new strain 51ATA was isolated from Lake Akkaya, Nigde, Turkey that is exposed to some industrial effluent charges. The new strain was identified as R. piscinae by phylogenetic analysis of the 16S ribosomal DNA (rDNA) sequence. The quality of molasses as a substrate for hydrogen production was evaluated by comparing it with other substrates, such as glucose and acetate. Five different culture media of various concentrations (1.0 g/L, 2.0 g/L, 5.0 g/L, 10 g/L, and 20 g/L) for each substrate were used. Results have shown that molasses was the best substrate for the biohydrogen production. The highest amount of biohydrogen obtained from each (20 g/L) substrate was (1.27 L H2/L from molasses-containing culture), (0.72 L H2/L from glucose-containing culture), and acetate-containing culture (0.21 L H2/L) respectively. From these results, we could conclude that R.piscinae 51ATA strain is as good as the other bacterial species used for hydrogen production and may be considered as a high potential strain for hydrogen production when used in combination with molasses under phototrophic conditions.  相似文献   

17.
The hydrogen-producing strain PROH2 pertaining to the genus Clostridium was successfully isolated from a shallow submarine hydrothermal chimney (Prony Bay, New Caledonia) driven by serpentinization processes. Cell biomass and hydrogen production performances during fermentation by strain PROH2 were studied in a series of batch experiments under various conditions of pH, temperature, NaCl and glucose concentrations. The highest hydrogen yield, 2.71 mol H2/mol glucose, was observed at initial pH 9.5, 37 °C, and glucose concentration 2 g/L, and was comparable to that reported for neutrophilic clostridial species. Hydrogen production by strain PROH2 reached the maximum production rate (0.55 mM-H2/h) at the late exponential phase. Yeast extract was required for growth of strain PROH2 and improved significantly its hydrogen production performances. The isolate could utilize various energy sources including cellobiose, galactose, glucose, maltose, sucrose and trehalose to produce hydrogen. The pattern of end-products of metabolism was also affected by the type of energy sources and culture conditions used. These results indicate that Clostridium sp. strain PROH2 is a good candidate for producing hydrogen under alkaline and mesothermic conditions.  相似文献   

18.
Waste activated sludge from a wastewater treatment plant is rich in polysaccharides and proteins and thus is a potential substrate for producing hydrogen. In this study, the hydrogen yield could be largely enhanced by using filtrates of waste sludge. The hydrogen yield was effectively increased from 1.34 mg H2/gTCOD (waste sludge) to 4.44 mg H2/gTCOD (filtrate). The changes of nutrients such as SCOD, protein and carbohydrate in sludge and its filtrate during fermentation have obviously diversity. It implied that the nutrients could be further released from the solid phase of the sludge during fermentation. In addition, the fermentation of the sludge was advantageous for releasing nutrients, but the H2 production might be lower at high substrate concentrations as a result of the inhibition products formed during hydrogen production. Therefore, the solid phase of waste sludge could not be utilized by the anaerobes as nutrient and it might absorb certain products, release toxic metals or deliver toxic substances during fermentation. The changes of pH indicated that conditions were favorable for hydrogen production from the filtrate. The 16S rRNA gene sequence, phylogenetic and biochemical character analyses demonstrated that strain GZ1 was a new strain of Pseudomonas and suitable for hydrogen production.  相似文献   

19.
厨余和污泥不同混合比例碱处理产氢特性研究   总被引:1,自引:0,他引:1  
以厨余垃圾和污泥为反应底物,加热预处理的污泥为发酵接种物,考察了碱处理下厨余与污泥不同混合比例的发酵产氢特性。结果表明:不同pH碱液对厨余垃圾进行预处理后,其效果以pH=13时最佳,预处理3h后SCOD和还原糖含量分别为31316.8mg/L和5.54mg/mL;碱预处理后的污泥与厨余联合发酵能够改善物料的营养平衡,缩短反应延迟时间到1h内;当厨余与污泥混和比例为5:1时为本试验最佳的试验条件,其氢气含量、比产氢速率峰值和氢产率分别为52.69%,1.73mL H_2/(h·gVS)和50.27mL H_2/gVS。  相似文献   

20.
Felled oil palm trunk (OPT) (25 years old) is an abundant biomass in Southern Thailand. The OPT composition was 31.28–42.85% cellulose, 19.73–25.56% hemicellulose, 10.74–18.47% lignin, 1.63–2.25% protein, 1.60–1.83% fat, 1.12–1.35% ash and trace amount of minerals (0.01–0.40%). Oil palm sap extracted from OPT was found to contain 15.72 g/L glucose, 2.25 g/L xylose, and 0.086 g/L arabinose. A total of twenty samples from hot springs (45–75 °C and pH 6.5–8.4), oil palm sap and palm oil mill effluent were enriched for isolation of hydrogen-producing bacteria. The highest hydrogen-producing strain was isolated from oil palm sap and identified as Clostridium beijerinckii PS-3 using biochemical test and 16S rRNA gene analysis. Among various carbon sources tested, glucose, xylose, starch and cellulose were the preferred substrates for hydrogen production. The strain PS-3 could produce the maximum hydrogen yield of 140.9 ml H2/g total sugar and the cumulative hydrogen production of 1973  ml/L-oil palm sap. Therefore, C. beijerinckii PS-3 is a potential candidate for fermentative hydrogen production from mixed sugars of the oil palm sap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号