共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
RBF网络和RBF核支持向量机比较研究 总被引:1,自引:0,他引:1
RBF网络是模式识别中应用最为广泛的一和神经网络.RBF核函数型支持向量机是一种性能卓越的新型学习机.将这两种学习机进行对比分析,以期在实际应用中做出更好的选择.首先,在理论上分析了这两种学习机在分类原理上的异同.接着,将它们应用于人脸识别,利用ORL人脸图像数据库进行了仿真实验,对比分析它们各自的识别率和泛化能力等性能指标.最后,提出了在应用这两种学习机进行模式识别时应注意的方面.实验结果表明,按照本文提出的两种训练模式,RBF型支持向量机在识别准确率上比RBF网络高出2%到4%.这说明RBF型支持向量机的性能要优于RBF网络.但是RBF网络易于实现,在样本数日足够多的情况下也不不失为一种好的算法. 相似文献
3.
本文介绍了支持向量机的工作原理,在其基础上建立学生能否毕业的预测模型,并与传统预测算法BP网络进行比较。实验结果和分析表明,支持向量机算法比BP算法在结构、参数确定上更加简单、训练时间快;大大提高了算法的识别率。证明了把支持向量机算法引入电大系统学生能否毕业的预测是有效的、可行的。 相似文献
4.
RBF核SVM及其应用研究 总被引:8,自引:1,他引:8
因其核函数的良好性态,RBF核SVM(RBF-SVM)在实际应用中表现出良好的学习性能,但是RBF核函数中的参数对SVM的性能起决定性作用.阐述了RBF-SVM的性能随着变化而变化的规律,并将RBF-SVM引入自动羽绒识别系统中.根据自动羽绒识别系统的实际需求和RBF-SVM的性能变化规律,论述了本系统中参数的选取依据和选取过程,并且给出了的相关曲线变化图.通过研究,最后得到适合本系统的识别模型,从而提高了系统的总体识别率.同时,也验证了RBF-SVM的良好特性和其受参数的约束规律. 相似文献
5.
传统成矿预测多以某种统计假设为前提,而在实际应用中往往找不到完全符合这样的地质事件。因此将非线性科学与矿产资源预测相结合是未来矿产资源预测的发展方向。人工神经网络(ANN)在进行预测时能够在输出和输入之间建立一个非线性映射关系,具有容错性好、自学习、自适应强等特征,但存在收敛速度慢、易陷入局部最优、网络结构不确定以及不能解决VC维等问题。SVM具有严格的泛化性理论指导和核函数强大的非线性映射能力,并且SVM不存在局部极小,维数灾难问题等。为此提出了基于SVM的成矿预测方法,将SVM应用于矿产资源的预测中,并对BP神经网络、RBF神经网络预测方法比较分析。实验结果表明,SVM预测方法优于BP神经网络方法和RBF神经网络,更加接近预测元素的实际值。 相似文献
6.
提出了一种基于感知器的SVM分类模型(PSVM)。该模型在对分类器的训练中;引入感知器分类思想;其先利用SVM的核函数进行核计算;判断其分类性能;分类正确则不作任何修改;反之则转化成感知器分类问题。实验结果表明该模型不但能提高SVM的分类性能;而且还可以降低SVM分类性能对核函数及参数选择的依赖。 相似文献
7.
8.
基于RBF神经网络的股票市场预测 总被引:1,自引:0,他引:1
提出了一种基于RBF(Radial Basic Function)神经网络的股票市场预测模型.RBF神经网络的结构简单,具有良好的全局逼近性能,以及非线性映射能力和高度非线性的特点.在这种情况下,根据股票数据是一类非线性较强的时间序列,对其进行预测,即从前N个数据中预测将来的M个数据,建立股票市场的短期预测模型,并以一个典型的实例加以分析和验证. 相似文献
9.
10.
负荷预测是电力行业非常重要的一项工作,是保证电网安全稳定运行的先决条件。提出了用支持向量机相关理论用于短期的负荷预测,结合某地区的真实数据,用Matlab中的libsvm工具包进行模型的建立,采用交叉验证方法确定最佳参数,并进行仿真预测和结果分析。结果表明,该方法的预测误差较小,具有较好的实用价值。 相似文献
11.
12.
This article provides some new insight into the properties of four well-established classifier paradigms, namely support vector machines (SVM), classifiers based on mixture density models (CMM), fuzzy classifiers (FCL), and radial basis function neural networks (RBF). It will be shown that these classifiers can be formulated in a way such that they are functionally equivalent or at least highly similar. The interpretation of a specific classifier as being an SVM, CMM, FCL, or RBF then only depends on the objective function and the optimization algorithm used to adjust the parameters. The properties of these four paradigms, however, are very different: a discriminative classifier such as an SVM is expected to have optimal generalization capabilities on new data, a generative classifier such as a CMM also aims at modeling the processes from which the observed data originate, and a comprehensible classifier such as an FCL is intended to be parameterized and understood by human domain experts. We will discuss the advantages and disadvantages of these properties and show how they can be measured numerically in order to compare these classifiers. In such a way, the article aims at supporting a practitioner in assessing the properties of classifier paradigms and in selecting or combining certain paradigms for a given application problem. 相似文献
13.
支持向量机是一种基于统计学习理论的新颖的机器学习方法,该方法已广泛用于解决分类和回归问题。该文利用支持向量回归算法中结构风险函数的性质以及KT条件,提出一种回归中的异常值检测方法。仿真实验结果表明了所给方法的可行性和有效性。 相似文献
14.
The aim of the research is evaluating the classification performances of eight different machine-learning methods on the antepartum cardiotocography (CTG) data. The classification is necessary to predict newborn health, especially for the critical cases. Cardiotocography is used for assisting the obstetricians’ to obtain detailed information during the pregnancy as a technique of measuring fetal well-being, essentially in pregnant women having potential complications. The obstetricians describe CTG shortly as a continuous electronic record of the baby's heart rate took from the mother's abdomen. The acquired information is necessary to visualize unhealthiness of the embryo and gives an opportunity for early intervention prior to happening a permanent impairment to the embryo. The aim of the machine learning methods is by using attributes of data obtained from the uterine contraction (UC) and fetal heart rate (FHR) signals to classify as pathological or normal. The dataset contains 1831 instances with 21 attributes, examined by applying the methods. In the paper, the highest accuracy displayed as 99.2%. 相似文献
15.
Julián Luengo Salvador García Francisco Herrera 《Expert systems with applications》2009,36(4):7798-7808
In this paper, we focus on the experimental analysis on the performance in artificial neural networks with the use of statistical tests on the classification task. Particularly, we have studied whether the sample of results from multiple trials obtained by conventional artificial neural networks and support vector machines checks the necessary conditions for being analyzed through parametrical tests. The study is conducted by considering three possibilities on classification experiments: random variation in the selection of test data, the selection of training data and internal randomness in the learning algorithm.The results obtained state that the fulfillment of these conditions are problem-dependent and indefinite, which justifies the need of using non-parametric statistics in the experimental analysis. 相似文献
16.
17.
Wing W. Y. Ng Daniel S. Yeung Defeng Wang Eric C. C. Tsang Xi-Zhao Wang 《Soft Computing - A Fusion of Foundations, Methodologies and Applications》2007,11(4):375-381
In pattern classification problem, one trains a classifier to recognize future unseen samples using a training dataset. Practically, one should not expect the trained classifier could correctly recognize samples dissimilar to the training dataset. Therefore, finding the generalization capability of a classifier for those unseen samples may not help in improving the classifiers accuracy. The localized generalization error model was proposed to bound above the generalization mean square error for those unseen samples similar to the training dataset only. This error model is derived based on the stochastic sensitivity measure(ST-SM)of the classifiers. We present the ST-SMS for various Gaussian based classifiers: radial basis function neural networks and support vector machine in this paper. At the end of this work, we compare the decision boundaries visualization using the training samples yielding the largest sensitivity measures and the one using support vectors in the input space. 相似文献
18.
19.
Least Squares Support Vector Machine Classifiers 总被引:396,自引:1,他引:396
In this letter we discuss a least squares version for support vector machine (SVM) classifiers. Due to equality type constraints in the formulation, the solution follows from solving a set of linear equations, instead of quadratic programming for classical SVM's. The approach is illustrated on a two-spiral benchmark classification problem. 相似文献
20.
核方法是机器学习中一种新的强有力的学习方法。针对核方法进行了探讨,给出了核方法的基本思想和优点。同时,描述了核方法的算法实现并举例进行了说明。 相似文献