首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E. coli strain PPA305, which has a wild-type PTS system, and PPA316, which utilizes a proton-galactose symport system for glucose uptake, were used as host strains to harbor a phenylalanine overproduction plasmid pSY130-14 and to study the effects of using different glucose uptake systems on phenylalanine production. The non-PTS strain (PPA316/pSY130-14) produced much less phenylalanine, ranging from 0 to 67% of that produced by the PTS strain (PPA305/pSY130-14) depending on cultivation conditions used. The non-PTS strain PPA316/pSY130-14 had an intracellular PEP concentration only one-sixth that of the PTS strain, PPA305/pSY130-14. Additionally, PPA316/pSY130-14 had a substantially lower energy state in terms of the size of the pool of high-energy phosphate compounds and the magnitude of the pH difference across the cytoplasmic membrane. The non-PTS strain consumed oxygen at a higher rate, attained lower biomass concentration, and produced no acetate and phenylalanine during fermentation, suggesting more carbon was oxidized to CO2, most likely through the TCA cycle. Analysis of intracellular fluxes through the central carbon pathways was performed for each strain utilizing exponential phase data on extracellular components and assuming quasi-steady state for intermediate metabolites. The non-PTS strain had a higher flux through pyruvate kinase (PYK) and TCA cycle which, in agreement with the observed higher oxygen uptake rate, suggests that more carbon was oxidized to CO2 through the TCA cycle. Further analysis using rate expression data for PYK and NMR data for the intracellular metabolites identified the regulatory properties of PYK as the probable cause for lower intracellular PEP levels in PPA316/pSY130-14.  相似文献   

2.
The feasibility of substituting glucose with fructose as a carbon source in Escherichia coli fermentations was investigated. Glucose, the most commonly used sugar in bacterial cultivations, is well-known to pose a number of drawbacks; the most important of which is the Crabtree effect, which results in acidogenesis. Fructose, a glucose structural isomer, offers a reasonable alternative for glucose, since its uptake and utilization are more tightly regulated. Comparative fermentation studies indicate that lower acetate excretion and higher biomass yields were attained in fructose-supplemented growth media compared with those of glucose media. More specifically, cells grown in defined media supplemented with fructose do not excrete detectable amounts of acetate, while about 40 mM of acetate was detected extracellularly in similar glucose cultures. A reduction in the initial growth rate of about 20% was observed with fructose, but final cell densities were about 70% higher compared with glucose supplements. Growth in complex LB media supplemented with fructose again resulted in higher biomass yields (up to 40%) and lower acetate excretion (30-40%) than the comparable glucose media. In bioreactor studies using LB media, acetate levels were reduced from 90 to less than 6 mM, while achieving a 25% improvement in biomass yield. When using richer media, cell densities of more than 40 g L-1 dry cell weight were attained in batch cultivation using fructose compared with 30 g L-1 for glucose. These results have immense applicability in the area of recombinant protein processes. Recombinant E. coli, overexpressing beta-galactosidase under the control of the strong pH-inducible promoter, achieved a volumetric recombinant protein yield of 2.2 million U mL-1 (corresponding to approximately 1.5 g L-1) in batch fructose cultures. This represents a 65% recombinant protein yield enhancement when compared to similar glucose cultivations.  相似文献   

3.
A dynamic model of glucose overflow metabolism in batch and fed-batch cultivations of Escherichia coli W3110 under fully aerobic conditions is presented. Simulation based on the model describes cell growth, respiration, and acetate formation as well as acetate reconsumption during batch cultures, the transition of batch to fed-batch culture, and fed-batch cultures. E. coli excreted acetate only when specific glucose uptake exceeded a critical rate corresponding to a maximum respiration rate. In batch cultures where the glucose uptake was unlimited, the overflow acetate made up to 9. 0 +/- 1.0% carbon/carbon of the glucose consumed. The applicability of the model to dynamic situations was tested by challenging the model with glucose and acetate pulses added during the fed-batch part of the cultures. In the presence of a glucose feed, E. coli utilized acetate 3 times faster than in the absence of glucose. The cells showed no significant difference in maximum specific uptake rate of endogenous acetate produced by glucose overflow and exogenous acetate added to the culture, the value being 0.12-0.18 g g-1 h-1 during the entire fed-batch culture period. Acetate inhibited the specific growth rate according to a noncompetitive model, with the inhibition constant (ki) being 9 g of acetate/L. This was due to the reduced rate of glucose uptake rather than the reduced yield of biomass.  相似文献   

4.
We report here the first quantitative study of the branched-chain amino acid biosynthetic pathway in Salmonella typhimurium LT2. The intracellular levels of the enzymes of the pathway and of the 2-keto acid intermediates were determined under various physiological conditions and used for estimation of several of the fluxes in the cells. The results led to a revision of previous ideas concerning the way in which multiple acetohydroxy acid synthase (AHAS) isozymes contribute to the fitness of enterobacteria. In wild-type LT2, AHAS isozyme I provides most of the flux to valine, leucine, and pantothenate, while isozyme II provides most of the flux to isoleucine. With acetate as a carbon source, a strain expressing AHAS II only is limited in growth because of the low enzyme activity in the presence of elevated levels of the inhibitor glyoxylate. A strain with AHAS I only is limited during growth on glucose by the low tendency of this enzyme to utilize 2-ketobutyrate as a substrate; isoleucine limitation then leads to elevated threonine deaminase activity and an increased 2-ketobutyrate/2-ketoisovalerate ratio, which in turn interferes with the synthesis of coenzyme A and methionine. The regulation of threonine deaminase is also crucial in this regard. It is conceivable that, because of fundamental limitations on the specificity of enzymes, no single AHAS could possibly be adequate for the varied conditions that enterobacteria successfully encounter.  相似文献   

5.
Escherichia coli strain F-122 was used to determine if there are additional physiological effects, other than decreasing energetic efficiency accompanied by the excretion of the acetate, on foreign protein production. This organism was the host for expressing HIV582-beta-galactosidase fusion protein under the control of the trp promoter, with ampicillin resistance. By comparing parallel batch cultures with and without acetate addition, it was found that the presence of acetate in the media did not influence beta-galactosidase activity. In these experiments, it appears that the low protein productivity often observed during acetate formation is the result of inefficient cell metabolism, rather than acetate acting as a specific inhibitor of protein production.  相似文献   

6.
Plasmid-free and plasmid-harbouring E. coli JM109 strains were investigated in shaken flasks, stirred tanks in batch and continuous operation. The shaken flask cultivations were performed in M9 minimal medium and in media with various protein supplements. The host hardly grows on M9 minimal medium as opposed to the plasmid-harbouring cells, which grow well on this medium. All of the investigated cells propagate well on protein-containing media. The influence of the combinations of repressor plasmid pRK248cI, the protection plasmid EcoR4 and the production plasmid pMTC48 were determined on the initial specific growth rate of the E. coli JM109 without gene expression, on the yield coefficient of cell growth, acetate concentration and acetate yield coefficient in the yeast extract-containing (HM) medium. The influence of various media on the induction of the gene expression were evaluated. In cultivation media with protein supplement, the growth rate and yield coefficient increased. The variation of the volumetric and specific beta-lactamase activities with the cultivation time were determined in a stirred tank reactor in HM medium. With increasing dilution rate the process performance decreased. Simple relationships exist between the substrate uptake rate and the specific growth rate of the continuous cultivated cells in M9 and HM media. The influence of the dilution rate on the cell mass concentration, colony forming units, acetate formation, yield coefficients of growth and acetate formation, substrate uptake rate, CO2 production rate, ammonium formation rate and beta-lactamase activity in M9 and HM media were determined as well. Carbon balances of the batch and continuous cultivations indicated high carbon recoveries. On account of the higher growth rate of plasmid-harbouring cells than than of the plasmid-free cells, the behaviour of the investigated plasmid-free and plasmid-harbouring E. coli JM109 cells deviates from the published properties of other plasmid-free and plasmid-harbouring E. coli cells.  相似文献   

7.
Escherichia coli and Salmonella typhimurium strains grown in Luria-Bertani medium containing glucose secrete a small soluble heat labile organic molecule that is involved in intercellular communication. The factor is not produced when the strains are grown in Luria-Bertani medium in the absence of glucose. Maximal secretion of the substance occurs in midexponential phase, and the extracellular activity is degraded as the glucose is depleted from the medium or by the onset of stationary phase. Destruction of the signaling molecule in stationary phase indicates that, in contrast to other quorum-sensing systems, quorum sensing in E. coli and S. typhimurium is critical for regulating behavior in the prestationary phase of growth. Our results further suggest that the signaling factor produced by E. coli and S. typhimurium is used to communicate both the cell density and the metabolic potential of the environment. Several laboratory and clinical strains of E. coli and S. typhimurium were screened for production of the signaling molecule, and most strains make it under conditions similar to those shown here for E. coli AB1157 and S. typhimurium LT2. However, we also show that E. coli strain DH5alpha does not make the soluble factor, indicating that this highly domesticated strain has lost the gene(s) or biosynthetic machinery necessary to produce the signaling substance. Implications for the involvement of quorum sensing in pathogenesis are discussed.  相似文献   

8.
The metabolic pathways specified by the glc and ace operons in Escherichia coli yield glyoxylate as a common intermediate, which is acted on by two malate synthase isoenzymes: one encoded by glcB and the other by aceB. Null mutations in either gene exhibit no phenotype, because of cross-induction of the ace operon by glycolate and the glc operon by acetate. In this study, the regulation of the glc operon, comprising the structural genes glcDEFGB, was analyzed at the molecular level. This operon, activated by growth on glycolate, is transcribed as a single message and is under the positive control of GlcC encoded by a divergent gene. Expression of the glc operon is strongly dependent on the integration host factor (IHF) and is repressed by the global respiratory regulator ArcA-P. In vitro gel-shift experiments demonstrated direct binding of the promoter DNA to IHF and ArcA-P. Mutant analysis indicated that cross-induction of the glc operon by acetate is mediated by the GlcC protein that recognizes the compound as an alternative effector. The similar pattern of regulation of the Glc and Ace systems by IHF and ArcA-P ensures their effective cross-induction.  相似文献   

9.
The possibility of the diversion of carbon flux from ethanol towards glycerol in Saccharomyces cerevisiae during alcoholic fermentation was investigated. Variations in the glycerol 3-phosphate dehydrogenase (GPDH) level and similar trends for alcohol dehydrogenase (ADH), pyruvate decarboxylase and glycerol-3-phosphatase were found when low and high glycerol-forming wine yeast strains were compared. GPDH is thus a limiting enzyme for glycerol production. Wine yeast strains with modulated GPD1 (encoding one of the two GPDH isoenzymes) expression were constructed and characterized during fermentation on glucose-rich medium. Engineered strains fermented glucose with a strongly modified [glycerol] : [ethanol] ratio. gpd1delta mutants exhibited a 50% decrease in glycerol production and increased ethanol yield. Overexpression of GPD1 on synthetic must (200 g/l glucose) resulted in a substantial increase in glycerol production ( x 4) at the expense of ethanol. Acetaldehyde accumulated through the competitive regeneration of NADH via GPDH. Accumulation of by-products such as pyruvate, acetate, acetoin, 2,3 butane-diol and succinate was observed, with a marked increase in acetoin production.  相似文献   

10.
Hydrogen (H2) production was maximized and methane (CH4) formation was minimized in a mixed anaerobic culture which was maintained at 21°C and fed glucose plus unsaturated long chain fatty acids (LCFAs). The initial pH in the batch reactors was 7.8±0.2. The two LCFAs under consideration included linoleic acid (LA) (two C=C bonds) and oleic acid (OA) (one C=C bond). Hydrogen production was observed when glucose was injected on Day 0 and again after Day 4. The H2 yield in cultures fed LA was less than those receiving OA. The H2 yield reached a maximum of approximately 1.1?mol?H2?mol?1 glucose when the LA level was 2,000?mg?L?1. In the case of OA, a maximum yield of 1.3?mol?H2?mol?1 glucose was attained with 2,000?mg?L?1. The inhibition caused by the addition of LA or OA diverted a fraction of electrons toward proton reduction. Under maximum H2 production conditions in the LA fed cultures the acetate production pathway was repressed, while in cultures fed OA the acetate pathway was dominant. The amount of CH4 produced decreased with increasing H2 production and the major volatile fatty acids detected were acetate, propionate and butyrate. Small quantities of formate were detected only in cultures fed LA after the first glucose injection. As the LCFA concentration increased, the initial glucose degradation rate decreased.  相似文献   

11.
Traditional vegetables in Kyoto are a unique group of vegetables that have been cultivated in limited areas near Kyoto city. We compared the traditional vegetables in Kyoto with common vegetables for the bio-antimutagenicity of their extracts against UV-induced mutation of E. coli B/r WP2. Among the traditional vegetables in Kyoto, Kamo eggplant (Solanaceae) and Katsura oriental pickling melon (Cucurbitaceae) showed higher bio-antimutagenicity and yield in the n-hexane, chloroform and ethyl acetate fractions than their common vegetable counterparts. Shishigatani pumpkin (Cucurbitaceae) possessed bio-antimutagenicity in the chloroform and ethyl acetate fractions, but common pumpkin did not. Polyphenolic compounds in the ethyl acetate fraction of plants are known to be related to antimutagenicity. However, the intensity of bio-antimutagenicity was not correlated with the polyphenol content in the ethyl acetate fractions of the present vegetables. In particular, Kamo eggplant possessed both polyphenolic and non-polyphenolic bio-antimutagenic sub-fractions in the ethyl acetate fraction. In the aqueous fraction, taro (Dioscoreaceae) was the most capable among our samples, whether being of common or traditional origin. Consequently, it is considered, that some traditional vegetables in Kyoto are superior to common vegetables in their bio-antimutagenicity and that these could be used as starting materials to identify new bio-antimutagens.  相似文献   

12.
Glycogen is a storage compound that provides both carbon and energy, but the mechanism for the regulation of its metabolism has not been fully clarified. Recently, we found a new glycogenolytic pathway in rat liver in which glycogen is first metabolized to 1, 5-anhydrofructose (AnFru) and then to 1,5-anhydroglucitol (AnGlc-ol). Because the amounts of glycogen and AnFru are closely related in various rat organs and the second reaction, AnFru to AnGlc-ol, is strongly inhibited in the presence of glucose, we expected that this pathway might play a regulatory role in glycogen metabolism. Here we evaluate the expected involvement of AnGlc-ol and AnFru in the regulatory mechanism in Escherichia coli C600. Having established the presence of this new glycogenolytic pathway in E. coli C600, we further show that the conversion of AnFru to AnGlc-ol is activated only after the exhaustion of glucose in the medium, and that as little as 5 microM AnGlc-ol in the medium acutely accelerates the degradation of glycogen by 40%. We consider the role of AnGlc-ol in the mechanism that controls glycogen metabolism in E. coli to be as follows. When glucose is abundant, E. coli accumulate glycogen, a fraction of which is steadily degraded so that the amount of AnFru is about 1/1,000 of glycogen on a weight basis. When glucose is depleted and the demand for glycogen utilization is elevated, AnFru, which has accumulated mostly in the medium, is promptly taken up and converted to AnGlc-ol, which accelerates glycogen degradation. We also suggest the possibility that AnGlc-ol is one of the extracellular signaling molecules for bacteria.  相似文献   

13.
This work describes the characterization of recombinant Escherichia coli ATCC 11303 (pLOI 297) in the production of ethanol from cellulose and xylose. We have examined the fermentation of glucose and xylose, both individually and in mixtures, and the selectivity of ethanol production under various conditions of operation. Xylose metabolism was strongly inhibited by the presence of glucose. Ethanol was a strong inhibitor of both glucose and xylose fermentations; the maximum ethanol levels achieved at 37 degrees C and 42 degrees C were about 50 g/l and 25 g/l respectively. Simultaneous saccharification and fermentation of cellulose with recombinant E. coli and exogenous cellulose showed a high ethanol yield (84% of theoretical) in the hydrolysis regime of pH 5.0 and 37 degrees C. The selectivity of organic acid formation relative to that of ethanol increased at extreme levels of initial glucose concentration; production of succinic and acetic acids increased at low levels of glucose (< 1 g/l), and lactic acid production increased when initial glucose was higher than 100 g/l.  相似文献   

14.
The metabolic and energetic properties of Leuconostoc mesenteroides have been examined with the goal of better understanding the parameters which affect dextransucrase activity and hence allowing the development of strategies for improved dextransucrase production. Glucose and fructose support equivalent specific growth rates (0.6 h-1) under aerobic conditions, but glucose leads to a better biomass yield in anaerobiosis. Both sugars are phosphorylated by specific hexokinases and catabolized through the heterofermentative phosphoketolase pathway. During sucrose-grown cultures, a large fraction of sucrose is converted outside the cell by dextransucrase into dextran and fructose and does not support growth. The other fraction enters the cell, where it is phosphorylated by an inducible sucrose phosphorylase and converted to glucose-6-phosphate (G-6-P) by a constitutive phosphoglucomutase and to heterofermentative products (lactate, acetate, and ethanol). Sucrose supports a higher growth rate (0.98 h-1) than the monosaccharides. When fructose is not consumed simultaneously with G-1-P, the biomass yield relative to ATP is high (16.8 mol of ATP.mol of sucrose-1), and dextransucrase production is directly proportional to growth. However, when the fructose moiety is used, a sink of energy is observed, and dextransucrase production is no longer correlated with growth. As a consequence, fructose catabolism must be avoided to improve the amount of dextransucrase synthesized.  相似文献   

15.
A defined medium with glucose as the carbon source was used to quantitatively determine the metabolic end products produced by Listeria monocytogenes under aerobic and anaerobic conditions. Of 10 strains tested, all produced acetoin under aerobic conditions but not anaerobic conditions. Percent carbon recoveries of end products, typified by strain F5069, were as follows: lactate, 28%; acetate, 23%; and acetoin, 26% for aerobic growth and lactate, 79%; acetate, 2%; formate, 5.4%; ethanol, 7.8%; and carbon dioxide, 2.3% for anaerobic growth. No attempt to determine carbon dioxide under aerobic growth conditions was made. The possibility of using acetoin production to assay for growth of L. monocytogenes under defined conditions should be considered.  相似文献   

16.
F18ab and F18ac are antigenic variants of a colonizing fimbria commonly found on E. coli associated with postweaning diarrhea and edema disease in pigs. Chicken F18ab antibodies were obtained by immunising hens with purified F18ab fimbriae. For their in vitro characterisation antibodies were isolated from diluted egg yolks by ammonium sulfate precipitation. In vitro adhesion tests demonstrated that the chicken F18ab antibodies inhibited attachment of F18ab positive E. coli bacteria to the intestinal mucosa. Just weaned piglets were experimentally infected with an F18ab positive edema disease strain of E. coli, or with an F18ac positive postweaning diarrhea E. coli strain. The animals were infected on the second day of a period during which chicken F18ab antibodies were added to their feed. During the same period, pigs of the control group received commercial eggs in which no F18 antibodies were detected. In both experimental infections the excretion of the F18 positive strain was reduced in pigs that received the F18ab antibodies as compared to the control animals. The F18ab antibodies diminished the cases of diarrhea and death in animals infected with F18ac positive E. coli.  相似文献   

17.
Despite the great effort that has gone into investigating urolithiasis, this condition still persists as one of the major ailments of the urinary tract. Calcium oxalate urolithiasis is the most common form, accounting for some 60 to 80% of total stones. This review examines the elements (i.e., urine volume and pH and urinary excretion of calcium, oxalate, citrate, urate, magnesium, pyrophosphate, and glycosaminoglycans) that give rise to idiopathic calcium oxalate urolithiasis. Treatment strategies for idiopathic calcium oxalate urolithiasis, including lithotripsy, also are discussed. Urinary oxalate excretion is a major risk factor for calcium oxalate urolithiasis, with 85 to 95% of the urinary load derived endogenously. The factors controlling endogenous oxalate production are reviewed, including pathways for the diversion of glyoxylate from oxalate production. The use of beta-aminothiols and other substances to reduce endogenous oxalate production in subjects with idiopathic calcium oxalate urolithiasis is also discussed. A review of current methodologies for the determination of urinary oxalate is also included.  相似文献   

18.
An avian pathogenic Escherichia coli strain M1000 showed a clear zone of erythrocyte lysis on sheep blood agar plates. The hemolytic activity was not detected in the culture supernatant nor was any DNA sequence homologous to the E. coli alpha-hemolysin gene detected in the chromosome or plasmid DNA of the strain, indicating that the observed hemolysis was different from alpha-type. To identify the genetic determinant responsible for the hemolysis, we performed random Tn5 insertional mutagenesis and obtained one mutant, named M5005, that totally lacked the hemolytic activity. Cloning and nucleotide sequencing of the region flanking the transposon insertion site in the M5005 chromosome revealed that the transposon was inserted within an open reading frame of the cyclic AMP receptor protein (CRP) gene, which is involved in one of the global regulatory networks of gene expression in E. coli. Nucleotide sequence analysis of the intact crp gene of the strain M1000 showed that the CRP protein of M1000 is 99% identical to that of K-12. Introduction of the intact crp gene on a low copy plasmid into the mutant M5005 restored the hemolytic phenotype, confirming that the mutation site in M5005 was in the crp gene. CRP plays a central role in catabolite repression, the phenomenon by which the synthesis of many enzymes required to metabolize various sugars is repressed in the presence of glucose. When the hemolytic activity of E. coli M1000 grown in the presence of glucose was examined, the hemolysis was totally impaired. These results indicate that the avian pathogenic E. coli strain M1000 produces a hemolysin the expression of which is dependent on crp gene function.  相似文献   

19.
The heart requires a constant supply of energy to sustain contractile function, which is supplied by hydrolysis of adenosine triphosphate derived primarily from the metabolism of fatty acids and carbohydrates. Understanding how production of adenosine triphosphate is regulated in the heart is critical to an understanding of how alterations in energy metabolism contribute to the severity of cardiac disease. A number of techniques can be used to measure energy metabolism in the heart. They include biochemical measurement of metabolites and enzymes of intermediary metabolism, measurement of arteriovenous differences in carbon substrate extraction by the heart, measurement of high-energy phosphates with 31P nuclear magnetic resonance, measurement of the rate of flux through the pathways of intermediary metabolism with 14C- and 3H-labeled carbon substrates, measurement of tricarboxylic acid cycle activity with 13C nuclear magnetic resonance, and measurement of glucose uptake and oxidative metabolism with positron emission tomography. Each of these techniques has advantages and limitations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号