首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
传统羰基化反应大多是在均相催化条件下进行的,但均相催化剂普遍存在催化剂与产物分离的难题,离子液体两相催化在一定程度上解决了催化剂从产物中分离的问题,但仍存在离子液体用量较大、反应效率低等缺点。固载离子液体相催化兼具均相催化和多均相催化的优点,将载体高比表面积的特点和离子液体优良的溶解性有机结合起来,在显著减少离子液体用量的同时,极大提高了催化反应的活性和选择性。系统总结了固载离子液体相催化的构建方法,综述了固载离子液体相催化在烯烃氢甲酰化、卤代芳烃羰基化、含N化合物羰基化和甲醇羰基化反应中的应用,并简要分析了固载离子液体相催化目前存在的问题及今后的发展方向。  相似文献   

2.
正本发明公开了一种由离子液体催化,制备乙二醇的方法,它包括以下步骤:(1)羰基化步骤:环氧乙烷和二氧化碳通过离子液体复合催化剂催化,生成碳酸亚乙酯和乙二醇,其中催化剂是由水溶液下羟基官能离子液体和碱金属盐共同组成的;(2)水解步骤:含碳酸亚乙酯的反应液在离子液体复合催化剂作用下与水反应生成乙二醇;(3)纯化步骤:含有  相似文献   

3.
合成了新型的酸性季鳞盐型离子液体(IL)取代传统的硫酸催化剂,并与Pt/C催化剂构成双催化剂体系用于硝基苯催化加氢一步合成对氨基苯酚(PAP)的反应.在4种酸性季鳞盐离子液体中,三苯基膦季鳞硫酸氢盐[HSO3(CH2)4P(Ph)3]HSO4的催化性能要优于三苯基膦季鏻三氟甲磺酸盐[HSO3(CH2)4P(Ph)3]C...  相似文献   

4.
二氧化碳作为全球变暖的主要温室气体,用于其捕捉、存储和利用的技术具有很高的社会和经济价值。本文通过催化反应使环氧乙烷和二氧化碳环加成生成碳酸乙烯酯,在很温和的条件下,环氧乙烷转化率达到97%,碳酸乙烯酯选择性达到98%,在有效固定二氧化碳的同时制备高附加值的产品。本研究考察了季铵盐、鏻鎓盐、卤族金属盐、咪唑、吡啶类离子液体等催化剂在该反应中的催化性能;比较了温度、二氧化碳压力、转速、添加剂等条件对该反应的影响。  相似文献   

5.
过渡金属配合物催化的潜手性酮不对称加氢反应是制备手性仲醇的一个有效方法,在医药、精细化工及先进材料等领域具有非常重要的应用。采用离子液体-有机溶剂双液相体系,以手性二胺及非手性单膦配体修饰的Ru配合物为催化剂,催化潜手性酮的不对称加氢反应。考察了反应温度、氢气压力、溶剂和离子液体用量等因素对反应结果的影响,同时也考察了催化剂在反应体系中的流失情况。结果表明离子液体可以有效地负载手性催化剂,催化剂在反应过程中的流失量很低,可以实现简单的萃取分离  相似文献   

6.
在甲苯/离子液体两相催化体系中,以三苯基膦和三氯化钌活化生成的配合物为催化剂,研究了顺酐选择性加氢生成四氢呋喃的反应,考察了离子液体、反应时间、反应温度、反应压力、顺酐与催化剂物质的量比以及离子液体用量对加氢反应的影响,同时考察了离子液体的循环使用。在453 K、12 h、4 MPa和n(PPh3)∶n(RuCl3)=3∶1的条件下,反应的转化率和选择性分别为100%和962%。由于催化剂“负载”于离子液体中且产物不溶于离子液体,通过简单的相分离即可分离催化剂和产物。离子液体催化体系重复使用5次后,其催化活性基本不变。  相似文献   

7.
离子液体中芳香硝基化合物羰基化合成硫代氨基甲酸酯   总被引:2,自引:2,他引:0  
金德宽 《精细化工》2011,28(2):191-196
研究了在离子液体1-丁基-3-甲基咪唑六氟磷酸盐([bmim]PF6)中,Pd-Fe/TiO2催化芳香硝基化合物与硫醇或硫酚的羰基化反应,考察了不同反应介质、Pd和Fe负载量(质量分数,下同)、硝基化合物与硫醇的摩尔比、催化剂用量和反应温度对羰基化反应的影响。结果表明,Pd和Fe负载量分别为0.5%和0.3%的Pd-Fe/TiO2催化剂在离子液体[bmim]PF6中对羰基化反应具有很高的催化活性,在硝基化合物10 mmol,醇或酚11 mmol,催化剂36 mg,离子液体10 mL,CO压力0.1 MPa,反应温度30℃,反应时间3~8 h的条件下,一系列芳香硝基化合物和硫醇或硫酚能顺利进行羰基化反应,大多数底物以较好的收率得到相应的硫代氨基甲酸酯。催化剂和离子液体回收简单,重复使用6次后,硫代氨基甲酸酯的收率无明显降低。  相似文献   

8.
离子液体作为一种新型绿色环保介质,由于其结构可设计、稳定性高以及催化活性高等优点,使其在CO_2环加成反应的催化方面应用前景广阔。本文综述了近年来离子液体催化CO_2与环氧化物的环加成反应制备环状碳酸酯的研究进展。传统离子液体包括咪唑类、吡啶类、季铵盐季盐等离子液体,而功能化离子液体包括羟基功能化、羧基功能化等离子液体。与传统离子液体相比,功能化离子液体具有更好的催化活性。无机或有机材料负载的非均相离子液体催化剂报道较多,载体包括SiO_2、氧化石墨烯、聚合物等。非均相催化剂具备易分离、可在固定反应器中连续反应等优点,更适应工业化生产。指出了CO_2与环氧化合物反应制备环状碳酸酯过程中出现的催化剂活性低、反应条件苛刻等关键问题,因此寻求高选择性合成环状碳酸酯的环境友好的新型高效催化剂具有重要的学术意义和实用价值。  相似文献   

9.
离子液体因其独特的溶剂性能、催化性能及结构可设计性,在催化体系中可作溶剂、催化活性中心、稳定剂、分散剂等。负载型钯催化剂具有比表面积大、金属分散性和热稳定性好等优点,但存在着催化剂对目标产物选择性差、成本高、反应机理尚不明确等问题。本文以苯酚选择性加氢为探针反应,综述了该反应对催化剂的要求及贵金属钯的优势。将苯酚加氢催化剂分为无机负载钯催化剂、聚合物负载钯催化剂和离子液体-聚合物负载钯催化剂三类,并分析了载体性质、助剂、离子液体、钯盐等对催化性能的影响。分析表明:具有一定规则微观形貌、含P、N等元素的非多孔性多官能团碱性载体催化效果较好,且载体中含有较多碱性中心,有利于催化剂活性和选择性的提高;助剂Na、K、Al、Ni、Ca、Cs等的加入可在降低成本的同时提高催化性能;钯盐Pd(OAc)_2加氢性能优于Pd(acac)_2、Pd Cl_2、Pd(NO_3)_2;离子液体的引入不仅使反应体系易分离、反应条件降低,而且提高了催化剂活性和选择性。今后的主要发展方向是深入研究离子液体在催化加氢过程中的作用、催化加氢机理、催化剂稳定性等。  相似文献   

10.
考察了7种不同离子液体对甲苯羰基化反应合成对甲基苯甲醛的催化性能,发现卤化1甲-基-3丁-基咪唑氯铝酸盐类离子液体的催化效果最好。考察了溴化1-甲基-3丁-基咪唑氯铝酸盐类离子液体中氯化铝的含量、反应温度、反应时间对甲苯羰基化反应合成对甲基苯甲醛的影响。结果发现,当反应温度为50℃,反应时间为6 h,离子液体中氯化铝的摩尔含量为0.67,催化剂与甲苯的质量比为2∶1时,目标产物对甲基苯甲醛的收率为26.8%,此离子液体重复利用3次后,仍具有较好的催化活性。  相似文献   

11.
In this study, ionic liquids immobilized on mesoporous MCM41 were prepared and their catalytic performance was tested in the synthesis of glycerol carbonate from transesterification of ethylene carbonate with glycerol. The ionic liquids were generated on chloropropyl functionalized MCM41 (CP-MCM41) via the immobilization of trialkylamines. The quaternary salt ionic liquid immobilized on MCM41 (RNX-MCM41) was characterized using a number of physical–chemical measurements including XRD, BET, 13C and 29Si MAS-NMR. Their catalytic performances were tested in a batch reactor. The influence of the structure of the quaternary ammonium salt and reaction parameters like temperature and reaction time was investigated. It was found that RNX-MCM41 with a longer alkyl chain length showed much better catalytic activity. High temperature and longer reaction time were favorable for the reactivity of RNX-MCM41. The catalyst can be reused for the reaction up to three consecutive runs without any considerable loss of its initial activity.  相似文献   

12.
固载化离子液体催化碳酸乙烯酯水解制备乙二醇   总被引:4,自引:1,他引:3  
采用溶胶-凝胶法制备了以SiO2为载体的固载化离子液体催化剂,并将其首次用于催化碳酸乙烯酯(EC)水解制备乙二醇(EG)的反应. 结果表明,固载化碱性离子液体S-[bpim][HCO3]对碳酸乙烯酯水解制EG反应具有良好的催化活性和EG选择性,克服了非均相催化剂活性不高与均相催化剂难以分离的不足. 在催化剂浓度为0.0511 g/mL、温度140℃、压力0.4 MPa及EC/H2O=1:2(摩尔比)、反应时间3 h的条件下,EC转化率达99.7%,EG选择性为100%. 该催化剂在循环使用5次后,EC转化率无明显下降,EG的选择性始终接近100%.  相似文献   

13.
The copolymerization of phenyl glycidyl ether (PGE) and carbon dioxide was performed in the presence of ionic liquid catalyst. 1-Butyl-3-methyl imidazolium chloride, tetrabutylamouim chloride and 1-n-butylpyridinium chloride were used as catalyst for this reaction carried out in a batch reactor. All the ionic liquid catalysts showed good catalytic activity for the synthesis of polycarbonates with very low polydispersity, close to 1. The carbonate content, turnover number (TON), and average molecular weight of the copolymer were affected by the structure of the ionic liquid. High carbon dioxide pressure enhanced TON and carbonate content because of the increase of carbon dioxide absorption in PGE solution. ZnBr2 and a Zn-Co cyanide complex were also tested as a catalyst and/or cocatalyst for this reaction to compare their catalytic performance with the imidazolium salt ionic liquids.  相似文献   

14.
固载化离子液体催化环氧乙烷和二氧化碳合成碳酸乙烯酯   总被引:2,自引:0,他引:2  
用溴化1-羟乙基-3-乙烯基咪唑、甲基丙烯酸钠、丙烯酸羟乙酯、苯乙烯4种单体共聚合成了高分子离子液体催化剂,表征了其结构. 将该催化剂固载到分子筛上制成固体颗粒催化剂,催化环氧乙烷(EO)与CO2合成碳酸乙烯酯(EC)的反应,考察了反应时间、温度、压力、催化剂用量对EO转化率及生成EC选择性的影响. 结果表明,在反应时间4 h、温度403.15 K、压力2.5 MPa、催化剂与环氧乙烷质量比9%的条件下,EO转化率为95%, EC选择性为98%,催化剂在循环使用10次后,EO转化率无明显下降,EC选择性接近100%. 该反应为一级反应,动力学方程为r=-dCEO/dt=9.872×104e-52.00/(RT)CEO.  相似文献   

15.
张海燕  代跃利  蔡蕾 《化工进展》2013,32(4):809-815
介绍了杂多酸催化剂在燃料油氧化脱硫中的应用研究进展。详细叙述了过渡金属、碱金属和稀土金属杂多酸催化剂、杂多酸季铵盐催化剂、杂多酸离子液体催化剂和以碳材料、二氧化钛、二氧化硅、高分子材料等为载体的负载型杂多酸催化剂,阐述了各种杂多酸催化剂的特点及脱硫效果,指出综合应用杂多酸催化剂特性开发活性高、耗氧少、重复使用性强的优良新型杂多酸催化剂是催化氧化深度脱硫的重要研究方向。  相似文献   

16.
Ionic liquid immobilized on commercial silica catalysts proved to be an effective heterogeneous catalyst for the synthesis of dimethyl carbonate (DMC) from transesterification of ethylene carbonate (EC) with methanol. The immobilized 1-n-alkyl imidazolium halide ionic liquid on commercial silica (RImX-CS) was characterized by EA, BET, FT-IR, 13C NMR and 29Si NMR. It was found that RImX-CS with a longer alkyl chain length showed much better catalytic activity. RImX-CS with chloride (Cl) as the counter anion showed the best catalytic activity. High temperature, high carbon dioxide pressure, and longer reaction time were favorable for the reactivity of BuImBr-CS. The catalyst can be reused for the reaction up to three consecutive runs without any considerable loss of its initial activity.  相似文献   

17.
煤气化复合催化剂研究及机理探讨   总被引:1,自引:1,他引:0  
催化气化是煤炭资源高效利用的重要形式,高性能催化剂的开发是降低其气化条件的重要途径.利用综合热分析仪进行了Ni-K复合催化剂对神府煤的催化气化实验研究,结果发现,复合催化剂有较高的催化活性,在最佳配比时较目前公认催化活性最好的单组分催化剂K2CO3要高,并得出复合催化剂的催化作用机理为:当温度达到反应温度时,液态金属熔融盐增大了离子间的接触,使协同作用成为可能,从而提高了催化剂的催化活性.  相似文献   

18.
离子液体催化二氧化碳合成环状碳酸酯的研究进展   总被引:1,自引:0,他引:1  
概述了以离子液体作为催化剂或作为反应介质,用CO2合成环状碳酸酯的研究进展。离子液体是固定CO2产生环状碳酸酯的适宜催化剂和溶剂,离子液体的话性可以通过添加本身并无活性或低活性的Lewis酸性金属卤化物或金属配合物得到改善。使用离子液体使得合成过程变得更加绿色和简单,因为产品易分离,催化剂可以循环利用,而且不必使用挥发性有害的有机溶剂。  相似文献   

19.
碳酸乙烯酯是重要的化工基础原料和中间体,也是CO2资源化利用的路径之一,越来越受到人们的关注。然而,在生产过程中广泛存在着环氧乙烷纯化能耗高、反应过程催化效率低和工艺复杂等问题。本文综述了在生产碳酸乙烯酯过程中环氧乙烷的吸收单元、转化单元以及生产工艺,重点总结了吸收剂的类型、催化剂的种类和催化机理以及生产工艺。最后,针对碳酸乙烯酯的生产技术,探讨了该研究领域亟待解决的问题和面临的挑战,并指出多位点离子液体催化剂的开发以及吸收转化耦合工艺的应用将成为未来研究的热点,具有较好的工业化前景。  相似文献   

20.
Polymer-supported NHC–metal catalysts were prepared from chloromethyl polystyrene resin via two-step reaction. Metals were loaded into 1.6 – 16 mol% of total imidazolium and the remaining imidazolium chloride salt provided ionic liquid moiety. The formation of metal complex with the polymer-supported NHC ligand was analyzed by ATR FT-IR, XRD, and XPS. The synthesized polymer-supported NHC–metal catalysts were applied to the dehydration of fructose into HMF. The environmentally benign and inexpensive polymer-supported NHC–FeIII catalyst showed good catalytic activity and yielded HMF at 73% (with a conversion of 97%). It could also be reused without significant loss of catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号