首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于多尺度Gabor滤波的造影血管中轴线的自动提取   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种自动提取数字造影血管图像中2维血管树中轴的新方法。作为血管树3维重建的基础,2维中轴提取的准确性显得格外重要。该方法充分利用了多尺度实Gabor滤波灵活的频率带宽和理想的增强效应,对不同粗细的血管进行中轴增强和去除背景噪声,再利用Hessian矩阵计算结果提供的方位信息进行非最大值抑制求取响应图的局部极值点,最后通过双阈值分割得到血管中轴线。实验结果表明,该方法鲁棒性好,提取中轴线的质量高。  相似文献   

2.

To improve the accuracy of retinal vessel segmentation, a retinal vessel segmentation algorithm for color fundus images based on back-propagation (BP) neural network is proposed according to the characteristics of retinal blood vessels. Four kinds of green channel image enhancement results of adaptive histogram equalization, morphological processing, Gaussian matched filtering, and Hessian matrix filtering are used to form feature vectors. The BP neural network is input to segment blood vessels. Experiments on the color fundus image libraries DRIVE and STARE show that this algorithm can obtain complete retinal blood vessel segmentation as well as connected vessel stems and terminals. When segmenting most small blood vessels, the average accuracy on the DRIVE library reaches 0.9477, and the average accuracy on the STARE library reaches 0.9498, which has a good segmentation effect. Through verification, the algorithm is feasible and effective for blood vessel segmentation of color fundus images and can detect more capillaries.

  相似文献   

3.
A system for three-dimensional reconstruction of dynamic (moving) vascular bed structures has been developed and is described. Input images are obtained from two-view (bi-plane or ECG correlated) X-ray angiograms. A target structure consisting of vessel branch points (nodes) and lines between the branch points is entered on the first of a sequence of images in one view. The movement of the nodes is indicated on subsequent images and on the images of the second view. The target is linearly warped according to the motion of the node points. Automatic edge detection (with subsequent operator correction) is used to detect centerlines and edges of vessels. Three-dimensional reconstruction is accomplished using a distance minimizing point matching technique. Finally, angle-corrected densitometric methods are used to refine the vessel cross section. Standard shaded surface display techniques are then used to display the moving arterial bed. Flow measurements are obtained by tracking the leading edge of the bolus down the three-dimensional arterial tree.  相似文献   

4.
李天培  陈黎 《计算机科学》2020,47(5):166-171
眼底视网膜血管的分割提取对于糖尿病、视网膜病、青光眼等眼科疾病的诊断具有重要的意义。针对视网膜血管图像中的血管难以提取、数据量较少等问题,文中提出了一种结合注意力模块和编码-解码器结构的视网膜血管分割方法。首先对编码-解码器卷积神经网络的每个卷积层添加空间和通道注意力模块,加强模型对图像特征的空间信息和通道信息(如血管的大小、形态和连通性等特点)的利用,从而改善视网膜血管的分割效果。其中,空间注意力模块关注于血管的拓扑结构特性,而通道注意力模块关注于血管像素点的正确分类。此外,在训练过程中采用Dice损失函数解决了视网膜血管图像正负样本不均衡的问题。在3个公开的眼底图像数据库DRIVE,STARE和CHASE_DB1上进行了实验,实验数据表明,所提算法的准确率、灵敏度、特异性和AUC值均优于已有的视网膜血管分割方法,其AUC值分别为0.9889,0.9812和0.9831。实验证明,所提算法能够有效提取健康视网膜图像和病变视网膜图像中的血管网络,能够较好地分割细小血管。  相似文献   

5.
A computerised system is presented for the automatic quantification of blood vessel topography in retinal images. This system utilises digital image processing techniques to provide more reliable and comprehensive information for the retinal vascular network. It applies strategies and algorithms for measuring vascular trees and includes methods for locating the centre of a bifurcation, detecting vessel branches, estimating vessel diameter, and calculating angular geometry at a bifurcation. The performance of the system is studied by comparison with manual measurements and by comparing measurements between red-free images and fluorescein images. In general an acceptable degree of accuracy and precision was seen for all measurements, although the system had difficulty dealing with very noisy images and small or especially tortuous blood vessels.  相似文献   

6.
Diabetic retinopathy (DR) is the major ophthalmic pathological cause for loss of eye sight due to changes in blood vessel structure. The retinal blood vessel morphology helps to identify the successive stages of a number of sight threatening diseases and thereby paves a way to classify its severity. This paper presents an automated retinal vessel segmentation technique using neural network, which can be used in computer analysis of retinal images, e.g., in automated screening for diabetic retinopathy. Furthermore, the algorithm proposed in this paper can be used for the analysis of vascular structures of the human retina. Changes in retinal vasculature are one of the main symptoms of diseases like hypertension and diabetes mellitus. Since the size of typical retinal vessel is only a few pixels wide, it is critical to obtain precise measurements of vascular width using automated retinal image analysis. This method segments each image pixel as vessel or nonvessel, which in turn, used for automatic recognition of the vasculature in retinal images. Retinal blood vessels are identified by means of a multilayer perceptron neural network, for which the inputs are derived from the Gabor and moment invariants-based features. Back propagation algorithm, which provides an efficient technique to change the weights in a feed forward network is utilized in our method. The performance of our technique is evaluated and tested on publicly available DRIVE database and we have obtained illustrative vessel segmentation results for those images.  相似文献   

7.
Diabetic retinopathy screening involves assessment of the retina with attention to a series of indicative features, i.e., blood vessels, optic disk and macula etc. The detection of changes in blood vessel structure and flow due to either vessel narrowing, complete occlusions or neovascularization is of great importance. Blood vessel segmentation is the basic foundation while developing retinal screening systems since vessels serve as one of the main retinal landmark features. This article presents an automated method for enhancement and segmentation of blood vessels in retinal images. We present a method that uses 2-D Gabor wavelet for vessel enhancement due to their ability to enhance directional structures and a new multilayered thresholding technique for accurate vessel segmentation. The strength of proposed segmentation technique is that it performs well for large variations in illumination and even for capturing the thinnest vessels. The system is tested on publicly available retinal images databases of manually labeled images, i.e., DRIVE and STARE. The proposed method for blood vessel segmentation achieves an average accuracy of 94.85% and an average area under the receiver operating characteristic curve of 0.9669. We compare our method with recently published methods and experimental results show that proposed method gives better results.  相似文献   

8.
针对眼底图像中末端小血管检测难、细节容易丢失的问题.提出一种基于离散小波变换(DWT)和形态学滤波的检测算法。通过小波变换多尺度分析眼底图像小血管系数、背景系数的不同特征.选取分量信号的系数后重构图像。同时以自适应阈值Canny算法提取小血管边缘;然后将结合小血管宽度选择适当结构元素半径,对重构图像进行灰度膨胀,实现小血管检测。结果表明,形态学结合DWT的检测算法能够准确地检测小血管.与常见边缘检测算法相比检测成功率较高。  相似文献   

9.
基于多尺度2D Gabor小波的视网膜血管自动分割   总被引:2,自引:0,他引:2  
眼底视网膜血管分割对临床视网膜疾病诊断具有重要意义. 由于视网膜血管结构微小, 血管轮廓边界模糊, 加上图像采集时噪声的影响, 视网膜血管分割非常困难. 本文提出一种视网膜血管自动分割新方法. 首先, 应用对比度受限的自适应直方图均衡法增强视网膜图像;然后, 采用不同尺度的2D Gabor小波对视网膜图像进行变换, 并分别应用形态学重构 (Morphological reconstruction, MR)和区域生长法 (Region growing, RG)对变换后的图像进行分割; 最后, 对以上两种方法分割的视网膜血管和背景像素点重新标记识别, 得到视网膜血管最终分割结果. 通过对DRIVE和STARE数据库视网膜图像的分割实验, 证明了该算法的有效性.  相似文献   

10.
The inspection of retinal fundus images allows medical doctors to diagnose various pathologies. Computer-aided diagnosis systems can be used to assist in this process. As a first step, such systems delineate the vessel tree from the background. We propose a method for the delineation of blood vessels in retinal images that is effective for vessels of different thickness. In the proposed method, we employ a set of B-COSFIRE filters selective for vessels and vessel-endings. Such a set is determined in an automatic selection process and can adapt to different applications. We compare the performance of different selection methods based upon machine learning and information theory. The results that we achieve by performing experiments on two public benchmark data sets, namely DRIVE and STARE, demonstrate the effectiveness of the proposed approach.  相似文献   

11.
一种视网膜血管自适应提取方法   总被引:3,自引:0,他引:3       下载免费PDF全文
为了快速有效地提取视网膜血管,根据视网膜图像的灰度分布特征,提出了一种新的基于自适应阈值化的血管提取方法。该方法是首先把图像划分成很多同样尺寸的小子图像,然后在每个子图像中分别计算局部阈值,并用该阈值分割该子图像。因为视网膜图像中血管和背景在局部范围内都比较均匀,所以在每个子图像中都存在一个局部阈值能够将其中的血管分割出来。采用的局部阈值计算方法不仅允许子图像可以取得很小,而且能够保证得到平方误差最小意义下的最优阈值。在阈值计算过程中,还用到一种基于过零点边缘检测技术的边缘追踪算法。最后还提出一种基于区域生长的特征综合方法,即通过综合两次阈值化分割得到的血管结构来清除碎片。多幅视网膜图像的实验证明,该方法的计算速度很快,并且可以提取包括细血管在内的绝大部分血管。  相似文献   

12.
Automatic segmentation of retinal blood vessels has become a necessary diagnostic procedure in ophthalmology. The blood vessels consist of two types of vessels, i.e., thin vessels and wide vessels. Therefore, a segmentation method may require two different processes to treat different vessels. However, traditional segmentation algorithms hardly draw a distinction between thin and wide vessels, but deal with them together. The major problems of these methods are as follows: (1) If more emphasis is placed on the extraction of thin vessels, the wide vessels tend to be over detected; and more artificial vessels are generated, too. (2) If more attention is paid on the wide vessels, the thin and low contrast vessels are likely to be missing. To overcome these problems, a novel scheme of extracting the retinal vessels based on the radial projection and semi-supervised method is presented in this paper. The radial projection method is used to locate the vessel centerlines which include the low-contrast and narrow vessels. Further, we modify the steerable complex wavelet to provide better capability of enhancing vessels under different scales, and construct the vector feature to represent the vessel pixel by line strength. Then, semi-supervised self-training is used for extraction of the major structures of vessels. The final segmentation is obtained by the union of the two types of vessels. Our approach is tested on two publicly available databases. Experiment results show that the method can achieve improved detection of thin vessels and decrease false detection of vessels in pathological regions compared to rival solutions.  相似文献   

13.
基于Gabor小波的视网膜血管自动提取研究   总被引:1,自引:0,他引:1  
针对视网膜血管网络灰度分布特征和区域结构特征,提出了一种基于Gabor小波的视网膜血管提取方法。采用Gabor滤波预处理以增强血管,用改进的自适应二值化方法对增强后的视网膜图像进行二值化处理,根据视网膜血管具有区域连通性的特征,并用形态学方法分割出最终的血管。为验证方法的有效性,对Hoover眼底图像库进行实验,结果表明该方法在细小血管的提取以及连续性、有效性方面都优于Hoover算法。  相似文献   

14.
15.
针对视网膜血管网络灰度分布特征与结构特征,提出了将灰度-梯度共生矩阵最大熵与微粒群算法相结合的视网膜血管提取方法。采用Gabor滤波以增强血管图像,获取增强后视网膜图像的灰度-梯度共生矩阵,利用微粒群算法并结合灰度-梯度共生矩阵的最大熵方法进行阈值化处理,对图像进行二值化处理后根据视网膜血管具有区域连通性的特征,采用形态学方法分割出最终的血管。实验结果表明,该方法能有效地提取视网膜血管网络。  相似文献   

16.
针对视网膜图像采集过程中由于疾病引起的图像光照反射过强问题,提出了一种修正的形态学与Otsu相结合的无监督视网膜血管分割算法。首先运用形态学中的高低帽变换增强血管与背景的对比度;然后提出了一种修正方法,消除部分由视网膜疾病引起的光照问题;最后使用Otsu阈值方法分割血管。算法在DRIVE和STARE视网膜图像数据库中进行了测试,实验结果表明,DRIVE数据库中的分割精度为0.9382,STARE数据库中的分割精度为0.9460,算法的执行时间为1.6s。算法能够精确地分割出视网膜血管,与传统的无监督视网膜血管分割算法相比,算法的分割精度高、抗干扰能力强。  相似文献   

17.
Automated segmentation of blood vessels in retinal images can help ophthalmologists screen larger populations for vessel abnormalities. However, automated vessel extraction is difficult due to the fact that the width of retinal vessels can vary from very large to very small, and that the local contrast of vessels is unstable. Further, the small vessels are overwhelmed by Gaussian-like noises. Therefore the accurate segmentation and width estimation of small vessels are very challenging. In this paper, we propose a simple and efficient multiscale vessel extraction scheme by multiplying the responses of matched filters at three scales. Since the vessel structures will have relatively strong responses to the matched filters at different scales but the background noises will not, scale production could further enhance vessels while suppressing noise. After appropriate selection of scale parameters and appropriate normalization of filter responses, the filter responses are then extracted and fused in the scale production domain. The experimental results demonstrate that the proposed method works well for accurately segmenting vessels with good width estimation.  相似文献   

18.
Eye-related disease such as diabetic retinopathy (DR) is a medical ailment in which the retina of the human eye is smashed because of damage to the tiny retinal blood vessels in the retina. Ophthalmologists identify DR based on various features such as the blood vessels, textures and pathologies. With the rapid development of methods of analysis of biomedical images and advanced computing techniques, image processing-based software for the detection of eye disease has been widely used as an important tool by ophthalmologists. In particular, computer vision-based methods are growing rapidly in the field of medical images analysis and are appropriate to advance ophthalmology. These tools depend entirely on visual analysis to identify abnormalities in Retinal Fundus images. During the past two decades, exciting improvement in the development of DR detection computerised systems has been observed. This paper reviews the development of analysing retinal images for the detection of DR in three aspects: automatic algorithms (classification or pixel to pixel methods), detection methods of pathologies from retinal fundus images, and extraction of blood vessels of retinal fundus image algorithms for the detection of DR. The paper presents a detailed explanation of each problem with respect to retinal images. The current techniques that are used to analyse retinal images and DR detection issues are also discussed in detail and recommendations are made for some future directions.  相似文献   

19.
Multispectral imaging (MSI) technique is often used to capture images of the fundus by illuminating it with different wavelengths of light. However, these images are taken at different points in time such that eyeball movements can cause misalignment between consecutive images. The multispectral image sequence reveals important information in the form of retinal and choroidal blood vessel maps, which can help ophthalmologists to analyze the morphology of these blood vessels in detail. This in turn can lead to a high diagnostic accuracy of several diseases. In this paper, we propose a novel semi-supervised end-to-end deep learning framework called “Adversarial Segmentation and Registration Nets” (ASRNet) for the simultaneous estimation of the blood vessel segmentation and the registration of multispectral images via an adversarial learning process. ASRNet consists of two subnetworks: (i) A segmentation module S that fulfills the blood vessel segmentation task, and (ii) A registration module R that estimates the spatial correspondence of an image pair. Based on the segmention-driven registration network, we train the segmentation network using a semi-supervised adversarial learning strategy. Our experimental results show that the proposed ASRNet can achieve state-of-the-art accuracy in segmentation and registration tasks performed with real MSI datasets.  相似文献   

20.
Vessel structures such as retinal vasculature are important features for computer-aided diagnosis. In this paper, a probabilistic tracking method is proposed to detect blood vessels in retinal images. During the tracking process, vessel edge points are detected iteratively using local grey level statistics and vessel's continuity properties. At a given step, a statistic sampling scheme is adopted to select a number of vessel edge points candidates in a local studying area. Local vessel's sectional intensity profiles are estimated by a Gaussian shaped curve. A Bayesian method with the Maximum a posteriori (MAP) probability criterion is then used to identify local vessel's structure and find out the edge points from these candidates. Evaluation is performed on both simulated vascular and real retinal images. Different geometric shapes and noise levels are used for computer simulated images, whereas real retinal images from the REVIEW database are tested. Evaluation performance is done using the Segmentation Matching Factor (SMF) as a quality parameter. Our approach performed better when comparing it with Sun's and Chaudhuri's methods. ROC curves are also plotted, showing effective detection of retinal blood vessels (true positive rate) with less false detection (false positive rate) than Sun's method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号